
Temporal Localization of Group
Activities in Football Videos

Master Thesis

Author
Jakob Thirup Fahl

Supervisors
Georgios Arvanitidis & Dimitrios Papadopoulos

March 15, 2024

Abstract
Understanding the distinct phases of play in football games is crucial for decipher-
ing opponent tactics, enabling managers and coaches to analyse the styles of play
exhibited by rival teams. This knowledge is used for developing the best possible
game plans designed to maximize team performance and exploit opponent weak-
nesses. However, the current manual process of labeling these phases in football
games is laborious and time-consuming. In this thesis, we propose a novel machine
learning approach for efficiently localizing and classifying group activities in foot-
ball videos. Our solution comprises a two-stage methodology, featuring a video
classification model and a transformer-based model. Remarkably, our video classi-
fication model surpasses human experts in classifying the phase of play, achieving
an accuracy of 75% compared to 70.83% on a randomly selected subset consisting
of 72 8-second clips of football games. Leveraging sequences of features from con-
secutive clips, extracted via the video classification model, our transformer-based
model further enhances performance. Our two-stage model is able to classify a full
90-minute football game in less than six minutes, a fraction of the time required
for manual labeling. In summary, we introduce a framework capable of accurately
predicting the phase of play throughout a football game, significantly reducing the
time required compared to current manual annotation methods.

i

Acknowledgements
I would like to extend a huge thanks to Dansk Boldspil-Union (DBU) for providing
me with their data and inspiring the idea for this thesis. Without them, this thesis
would not have been possible. I would also like to express my sincere gratitude
to my supervisors, Associate Professors Georgios Arvanitidis and Dimitrios Pa-
padopoulos, for their constant guidance and insightful feedback. Their expertise
has been invaluable throughout this journey. I am incredibly grateful to everyone
who took the time to complete the survey. Lastly, a big thank you to the DTU
Computing Center for their High-Performance Computing services, which made
the computational aspects of this thesis much smoother.

ii

Preface
The present MSc thesis is a partial fulfillment of the requirements for the Master of
Science degree in Human-Centered Artificial Intelligence at Technical University
of Denmark.

The project accounts for 35 ECTS and is conducted between 15.09.2023 and
15.03.2024. The exact topic along with the objectives of the project are defined in
collaboration between the author and the supervisors.

Kongens Lyngby, March 15, 2024

Jakob Thirup Fahl (s184419)

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Goals and Solutions . 2
1.4 Scope and Limitations . 2
1.5 Main Contributions . 2
1.6 Thesis Outline . 2

2 Background and Theory 4
2.1 Neural Networks (NNs) . 4

2.1.1 Feed-Forward Neural Networks (FNNs) 4
2.1.2 Convolutional Neural Networks (CNNs) 5
2.1.3 Residual Networks (ResNets) 6

2.2 Transformers . 7
2.3 Image Classification . 8
2.4 Object Detection and Tracking . 9
2.5 Video Classification . 11
2.6 Temporal Action Localization . 11

3 Related Work 13

4 Dataset Description 15
4.1 DBU Data . 15

4.1.1 The Play Phases . 15
4.1.2 Data Preprocessing . 18
4.1.3 Data Split . 19
4.1.4 Descriptive Statistics . 20

4.2 SoccerNet-v2 Dataset . 22
4.2.1 Data Preprocessing . 23
4.2.2 Data Augmentations . 23

5 Methods 25
5.1 Methodological Considerations . 25
5.2 The Model . 26

5.2.1 Stage 1: Video Classification Model 26

iv

CONTENTS v

5.2.2 Stage 2: Transformer-based Model 27
5.2.3 The Complete Model . 29

5.3 Player and Line Detection Input Clips 30

6 Experiments and Results 32
6.1 TSN Video Classification . 32

6.1.1 Experimental Setup and Evaluation Metrics 32
6.1.2 Training Experiments . 33
6.1.3 Results . 35
6.1.4 Human Comparison . 40
6.1.5 Feature Analysis . 41
6.1.6 Further Analysis . 44

6.2 Transformer-based Model . 44
6.2.1 Experimental Setup and Evaluation Metrics 44
6.2.2 Training Experiments . 45
6.2.3 Results . 47
6.2.4 Feature Analysis . 50

6.3 Player and Line Detection Clips . 51
6.3.1 Experimental Setup and Evaluation Metrics 51
6.3.2 YOLOv8 Training Experiments and Results 52
6.3.3 Video Classification with Player and Line Detection Clips . 54

7 Discussion 56

8 Conclusion 59

9 Future Work 61

References 63

A Appendix 70
A.1 YOLOv8 Architecture . 70
A.2 TSN Experiments . 71
A.3 YOLOv8 Experiments . 72

List of Figures

2.1 Feed-forward neural network (FNN) with 3 hidden layers. [4] 5
2.2 Convolution operation of a 3x3 kernel on a 6x6 image, followed by

a 2x2 max pooling with a stride of 2. 6
2.3 Residual block. [6] . 6
2.4 Transformer architecture from A. Vaswani et al.[7]. The inputs

are embedded and fed through Nx encoder layers with multi-head
attention and a feed-forward layer (left). The outputs are then
fed through Nx decoder layers with multi-head attention, a feed-
forward layer and a masked multi-head attention layer, followed by
a linear layer and a softmax activation function (right). 8

2.5 LeNet architecture from the original paper[18]. It processes a 32x32
image through two convolutional layers, each followed by average
pooling. The output is flattened and passed through two fully-
connected layers, and a final 10-neuron layer for digit classification
using softmax activation. 9

4.1 Examples of play phases. Figures a, b and c are examples of VI
phases - that is when the team attacking from left to right has the
ball. Figures d, e and f are DE phases which is when the other team
is in possession of the ball. 16

4.2 Sequence of frames from a ”VI-DE” transition phase. A player
from the attacking team passes the ball (left) which goes to the
opposition team (middle) who then start a counter attack (right). . 18

4.3 Single-frame examples of the ”none” phase. Figure (a) shows an
example of a corner, Figure (b) shows an example of a free-kick
and Figure (c) shows an example of a goal-kick. 18

4.4 Extracting well-defined clips from a game. The large blue rectangle
shows the timeline of the play phases of a section of a game, and
the red rectangles show the extracted 8-second clips. 19

4.5 Extracting consecutive clips from a game. The large blue rectangle
shows the timeline of the play phases of a section of a game, and
the red rectangles show the extracted 8-second clips. 19

vi

LIST OF FIGURES vii

4.6 Data Split: Out of the 43 games, 33 are allocated for training, 3
for validation, and 7 for testing purposes. Each split comprises two
sets: one consisting of well-defined clips and another consisting of
consecutive clips. 20

4.7 Histogram of duration of play phases. We see that the final attack-
ing phases (VI 3 and DE 3), as well as the transition phases (VI-DE
and DE-VI) are generally shorter than the other phases. 21

4.8 Evolution of play phases during football games. Most phases both
follow and precede the ”none” phases, likely a cause of the ball going
out of play. Furthermore, we also see a progression where ”VI 2”
often follows ”VI 1” and ”VI 3” often follows ”VI 2”, mimicking an
in-game progression of an attack. The same is seen for the ”DE”
phases. 22

4.9 Augmentations performed on a SoccerNet-v2 image. 24

5.1 TSN pipeline. In the example shown here, the input clip is split
into num_clips = 3 segments of length clip_len = 4, sampled at
intervals of frame_interval = 2 frames. Each of these segments are
then fed through a ResNet backbone, and their output features are
combined. These combined features are then fed through a linear
layer and a softmax activation function to get the output probabilities. 27

5.2 Pipeline of transformer-based model. The input sequence of fea-
tures is fed through a feed-forward layer before a positional encoding
is added. These are then passed through nlayer encoder layers, each
of which contains multi-head attention, a feed-forward network and
layer normalization. It is then passed through a final linear layer
and softmax activation function, resulting in the output probabilities. 28

5.3 Pipeline of the complete model. A full game is split into 8-second
clips from which segments are extracted and fed through a ResNet
backbone to acquire a feature representation of these clips. Se-
quences of features from consecutive clips are then fed to the transformer-
based model to get a phase prediction. 29

5.4 Example of how a player and line detection frame is made. From the
original image (a), players are detected using our YOLOv8 player
detection model trained on the SoccerNet-v2 dataset. These players
are then clustered into two teams using KMeans clustering on the
bounding boxes (b). A DeepLabV3 segmentation model is used to
detect the pitch lines (c), and finally the detected and clustered
players are mapped onto this image (d). 31

6.1 Performance evaluation of the TSN video classification model with
varying clip_len parameters. We see that setting the clip_len = 10
results in the best performance on mean top 1 accuracy and second
best performance on top 1 and top 5 accuracy. 34

LIST OF FIGURES viii

6.2 Performance evaluation of the TSN video classification model with
varying interval parameters. We see that the original value of
interval = 1 is optimal, as this yields both the best top 1 accuracy
and mean top 1 accuracy scores. 34

6.3 Confusion matrix of our model’s predictions versus the ground truths,
showing the number of occurrences for each predicted and true class.
Generally our model’s prediction match the ground truths. How-
ever, we see our model sometimes struggles to differentiate between
”VI 1” and ”VI 2” and ”DE 1” and ”DE 2”. Furthermore, the tran-
sition phases (VI-DE and DE-VI) also cause some confusion. 35

6.4 Bar plot of output probabilities of our model on a sample of clips
from the test set. The blue bars show the output probabilities for
each phase, and the bars marked with red denote the ground truth
phase. Clip 524 shows an example of the model struggling with
the transition phase, and clips 1003, 1487 and 1899 show the model
struggling to differentiate between phases 1 and 2, and phases 2
and 3. 36

6.5 Examples of clips where our model predicts the correct label. 37
6.6 Examples of clips where our model predicts the wrong label. 38
6.7 Top 1, 2, ... 9 accuracy of our TSN video classification model on

each of the 7 test games. We see a great increase from top 1 to top
2 accuracy, and a further good increase to top 3 accuracy. We also
see a large difference in performance between the individual test
games. 39

6.8 Top 1 accuracy of our model compared to humans. Our model
(purple) outperforms normal humans with a knowledge of football
(green) as well as human experts in this field (blue). 40

6.9 Confusion matrix of correct and wrong predictions of our model
and humans. The majority of clips are accurately predicted by both
our model and humans, with only 6.9% of clips being incorrectly
predicted by both. 41

6.10 2D representation of features from all clips. The features were re-
duced to two dimensions using t-SNE. We notice a separation of at-
tacking phases (blue) and defending phases (orange). Additionally,
”VI 1” is next to ”VI 2”, and ”VI 2” is next to ”VI 3”, showcasing a
similarity between phase 1 and 2 and phase 2 and 3. This similarity
can also be seen with the defending phases. 42

6.11 2D representation of features from all clips with each game colored
differently. We have highlighted some of the games where all the
clips are clustered closely together. 43

6.12 2D representation of features for individual games. We see that
each of these follow the same patterns mentioned before. 43

LIST OF FIGURES ix

6.13 Top 1 accuracy of transformer-based model with varying hyper-
parameters. The parameters lseq = 11, dmodel = 64 and dff = 128
were kept constant while the number of heads and number of layers
were varied. The experiment was performed with different dropout
values. We see that the best dropout values are 0.1 and 0.2, and
that optimal number of layers is between 4 and 10. The combina-
tion of hyperparameters that resulted in the best top 1 accuracy
was 64 heads and 4 layers with a dropout of 0.2, which yielded a
top 1 accuracy of 73.37%. 46

6.14 Precision and recall scores for all phases for the original TSN video
classification predictions (red) and the refined predictions from the
transformer-based model (blue). Some of the recall scores for the re-
fined predictions are better than the original predictions, and some
are worse. However, precision scores are drastically increased for
all phases, except the ”none” phase. 47

6.15 Confusion matrix of the predictions for our original TSN video
classification model (left), and our refined predictions using the
transformer-based model (right). They show the number of occur-
rences for each predicted and true class. Note the high number of
occurrences where the models correctly predict ”none”, this is due
to the large number of ”none” phases in the test set consisting of
consecutive clips. 48

6.16 Original TSN video classification predictions (red) and refined pre-
dictions (green) over a complete half of one of the test games. The
refined predictions fit the ground truths much better than the orig-
inal predictions and appear more stable. 49

6.17 2D representation of features from all clips after being passed through
the transformer-based model. We notice a clear separation of every
single phase. Unlike the feature representation of the TSN video
classification model, there does not appear to be the same grouping
of the attacking phases (blue) and defending phases (orange). . . . 50

6.18 Performance of the YOLOv8 baseline models on the SoccerNet-v2
validation set. We see that the larger models perform better in all
metrics. We also see that the models find it much harder to detect
the balls than the persons. 52

6.19 Performance of the final YOLOv8 model on the SoccerNet-v2 vali-
dation set. The yolov8x baseline was trained on the v4 dataset on
images of size 1280x1280 pixels and with a momentum of 0.85. We
see that it is particularly good at detecting the players, but still
struggles when it comes to detecting the balls. 53

6.20 Comparison of the pretrained YOLOv8 extra-large model (orange/yellow)
and our trained model (blue/purple). When comparing overall
scores, as well as class-by-class scores, our model performs signifi-
cantly better than the pretrained model. 54

LIST OF FIGURES x

6.21 Top 1 accuracy of our new model (lime) compared to our origi-
nal model (purple), normal humans with a knowledge of football
(green) as well as human experts (blue). 55

A.1 Graph of YOLOv8 architecture by GitHub user RangeKing, taken
from https://github.com/ultralytics/ultralytics/issues/189 70

A.2 YOLOv8 runs with different baseline models, trained on v1 of the
dataset. 72

A.3 YOLOv8l (large model) runs trained on different datasets. 73
A.4 YOLOv8l (large model) trained on the v3 dataset with different

image sizes. 74
A.5 YOLOv8l (large model) trained on the v3 dataset with different

momentum values. Input images are 1280 pixels. 74
A.6 YOLOv8x (very large model) trained on the v3 and v4 datasets

with different momentum values. Input images are 1280 pixels. . . . 75

List of Tables

4.1 Occurrences and average duration of each phase of play. 21

A.1 Table of all TSN video classification model experiments carried out.
It shows the parameters (scale, clip len, interval and num) for each
given training run, the epoch where the best model was reached, as
well as the performances on the validation set. Our final model is
highlighted in bold. 71

xi

LIST OF TABLES xii

Abbreviations

Abbreviation Description
VI Danish for ”us” - used to denote the phases of play where

the team attacking from left to right is in possession of
the ball

DE Danish for ”them” - used to denote the phases of play
where the team attacking from right to left is in possession
of the ball

CNN Convolutional Neural Network
DBU Dansk Boldspil-Union / Danish Football Association
DETR Detection Transformer
FNN Feedforward Neural Network
HPC High Performance Computing
IOU Intersection Over Union
MLP Multi-Layer Perceptrons
NLP Natural Language Processing
NN Neural Network
R-CNN Region-based Convolutional Neural Network
ReLU Rectified Linear Unit
ResNet Residual Network
TSN Temporal Segment Network
ViT Vision Transformer
YOLO You Only Look Once - object detection model

CHAPTER1
Introduction

1.1 Motivation
Football is the most watched sport globally[1], and the ever-increasing amount
of followers drives teams to achieve the best possible results on the pitch. This,
combined with the increased amount of money being pumped into football by TV-
companies and sponsors[2], has provided teams with more incentive and resources
for improvement. In recent years, a lot of these resources have been put into data
science and machine learning approaches to analyse player and team performances
and better understand the game.

One particular area where machine learning can be used to better understand a
football game is detecting the phases of play throughout a game. Phases of play are
used to describe which stage a game is in, based on the positions of the players on
the pitch. For example, a phase could be when a team is attacking the opponent’s
goal, or when a team is trying to win the ball back high up the pitch. Analysing
the distinct phases of play can provide valuable feedback for coaches about their
own team, as well as crucial information about the style of play of rival teams.

1.2 Problem Statement
Currently, detecting phases of play is done manually, which is a timely process
as it requires looking through over 90 minutes of footage for every single game
and labeling the phases of play. In tournaments such as the FIFA World Cup[3],
teams progressing to the knockout stages do not know their opponents until a few
days before they have to play each other. Accelerating the phase detection process
would furnish teams with a significant advantage, allowing for more comprehensive
opponent analysis and strategic preparation within tight timelines.

1

1.3 Goals and Solutions 2

1.3 Goals and Solutions
This thesis aims to address the aforementioned challenges. By leveraging machine
learning techniques, we aim to streamline the process of phase detection, enabling
faster and more accurate analysis of football games. As phases of play depend on
the positions of all players on the pitch, they can be considered group activities.
Hence, this thesis seeks to answer the research question:

”How can machine learning approaches be effectively applied to temporally localize
and classify group activities in football videos?”

Our solution involves a two-stage approach consisting of a video classification
model followed by a transformer-based model. The video classification model
classifies video segments into distinct game phases, while the transformer-based
model further refines these by looking at sequences of predictions.

1.4 Scope and Limitations
The available data provided by the Danish Football Association (DBU) comprises
only games of professional men’s senior national teams, thereby limiting the scope
of this thesis. While this does not necessarily imply that our proposed solution
will not generalize to other levels of play, such as women’s or amateur games, it
may lead to compromised performances due to differences in tactics, pace, etc.
Additionally, all game footage used in this study was captured using a single
camera setup, thus restricting us to games captured with this same setup.

1.5 Main Contributions
Our main contribution consists of a two-stage solution to the aforementioned re-
search question, comprising a video classification model followed by a transformer-
based model. In terms of detecting the phase of play in 8-second clips of football
games, our video classification model surpasses human experts, achieving an ac-
curacy of 75% compared to 70.83% on a randomly selected subset of these clips.
Leveraging sequences of features from consecutive clips, extracted via the video
classification model, our transformer-based model further enhances performance.

1.6 Thesis Outline
In Chapter 2, we delve into key machine learning concepts essential for this thesis,
followed by an exploration of related works in Chapter 3. Chapter 4 provides an
overview of the datasets utilized in this study, accompanied by initial descriptive
statistics. Our proposed solution’s design is outlined in Chapter 5, including the
rationale behind our decisions. Chapter 6 details the experiments conducted and

1.6 Thesis Outline 3

presents the results obtained, while Chapter 7 provides a discussion of these results.
We draw our conclusions in Chapter 8, before delving into potential avenues for
future improvement in Chapter 9.

CHAPTER2
Background and Theory

This chapter provides an overview of the theory and concepts employed in this
thesis. It begins by covering general machine learning topics. Section 2.1 delves
into deep neural networks, describing feed-forward neural networks (FNNs), con-
volutional neural networks (CNNs) and residual networks (ResNets) respectively,
as these serve as fundamental building blocks for many advanced models. Further,
Section 2.2 elaborates on transformer models’ theory and advancements, including
their adaptation to visual tasks. The chapter subsequently delves into advance-
ments within relevant computer vision tasks, accompanied by key papers within
the respective fields. Specifically, section 2.3 explores image classification, while
section 2.4 elaborates on object detection theory. Moreover, section 2.5 delves
into video classification, followed by section 2.6, which discusses temporal action
localization.

2.1 Neural Networks (NNs)
Neural networks (NNs) are a class of machine learning models inspired by the
structure and functioning of the human brain. They consist of interconnected
neurons (or nodes) organized into layers, with each neuron performing a simple
computation and passing its output to other neurons in the network. In this
section, several types of neural network architectures are described.

2.1.1 Feed-Forward Neural Networks (FNNs)
Feed-forward neural networks, also known as multi-layer perceptrons (MLPs), rep-
resent the simplest form of neural networks. In FNNs, information flows from the
input layer through one or more hidden layers to the output layer. Each neuron
in one layer is connected to every neuron in the next layer, and each connection
has an associated weight that is optimized during training through the process of
backpropagation, aiming to minimize the difference between the predicted outputs
and the true outputs for a given training set. A visualisation of a FNN can be

4

2.1 Neural Networks (NNs) 5

Figure 2.1: Feed-forward neural network (FNN) with 3 hidden layers. [4]

seen in Figure 2.1.

2.1.2 Convolutional Neural Networks (CNNs)
Convolutional Neural Networks (CNNs)[5] are a type of deep neural network pri-
marily used for processing and analysing two-dimensional data, such as images.
CNNs are mainly constructed from three types of layers: Convolutional layers,
pooling layers and fully-connected layers.

Convolutional layers: These are the main building blocks of a CNN, and con-
sist of kernels or filters which are applied to the input. In the case of a gray-scale
image, a 3x3 kernel is applied by systematically traversing each pixel in the input
image. At each pixel location, a convolution operation is performed by taking the
sum of the element-wise multiplication of the 3x3 neighborhood surrounding the
pixel with the corresponding elements of the kernel. This can be seen in Figure 2.2.

Pooling layers: These are typically employed following a convolutional layer,
and they commonly utilize two primary types of pooling methods: Max-pooling
and average-pooling. In the case of 2x2 max-pooling, the operation systemati-
cally scans the input data in 2x2 regions at a time and outputs the maximum
pixel value found within each of these regions. This process effectively reduces
the spatial dimensions of the data, aiding in dimensionality reduction and feature
selection. This can also be seen in Figure 2.2.

Fully-connected layers: These are like the layers in feed-forward neural net-
works[4] in that all input neurons (pixels) are connected to all output neurons.
Fully-connected layers are usually applied at the end of CNNs, and typically fol-
lowed by a softmax activation function to classify inputs appropriately.

2.1 Neural Networks (NNs) 6

Figure 2.2: Convolution operation of a 3x3 kernel on a 6x6 image, followed by a
2x2 max pooling with a stride of 2.

2.1.3 Residual Networks (ResNets)
Residual Networks (ResNets), introduced by Kaiming He et al.[6], are deep neu-
ral network architectures designed to tackle the challenge of vanishing gradients
encountered in training very deep networks. ResNets are comprised of multiple
residual blocks, each consisting of convolutional layers followed by a Rectified
Linear Unit (ReLU) activation function and a skip connection, also known as an
identity shortcut. This skip connection allows the network to learn residual func-
tions with respect to the layer inputs, making it easier to train very deep networks.

The architecture of a residual block is depicted in Figure 2.3. By integrating
skip connections, ResNets ensure smooth gradient flow during backpropagation,
effectively addressing the vanishing gradient problem. Consequently, ResNets en-
able the training of deeper neural networks with improved performance. Modern
ResNets used as backbones for advanced models typically consist of up to 50, 101
or even 152 layers.

Figure 2.3: Residual block. [6]

2.2 Transformers 7

2.2 Transformers
Transformers were initially proposed for Natural Language Processing (NLP) tasks
in the 2017 paper ”Attention Is All You Need” by A. Vaswani et al. [7], where
they introduced a new model architecture based solely on attention mechanisms.
Their proposed attention mechanism, Scaled Dot-Product Attention, takes as in-
put queries, Q, and keys, K, of dimension dk and values, V , of dimension dv, where
each of Q, K and V are vectors computed by multiplying the input by learned
linear projections. The attention is then computed as:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V (2.2.1)

To enable the model to learn distinct positional representations within a sequence,
the Multi-Head Attention mechanism is employed. This is achieved by creating
multiple distinct sets of queries, keys and values through different learned linear
projections. The Scaled Dot-Product Attention function (2.2.1) is then performed
on these sets in parallel, and the resulting outputs are concatenated and projected
to obtain the final representation

The complete architecture of the Transformer is visualized in Figure 2.4. The
encoder is a stack of N = 6 identical layers consisting of a Multi-Head Attention
layer and a feed-forward layer. Both layers have a residual connection and a nor-
malisation layer. The input to the first encoder layer is the input embedding, and
for the following layers the input is the output of the previous layer. The decoder
(right) is also a stack of N = 6 identical layers. Each layer has the same two
sub-layers as the encoder, but also a third sub-layer which performs multi-head
attention over the output of the encoder. It is finished off with a linear layer and
a softmax activation to get the output probabilities.

While transformers were initially designed for NLP tasks, they have become state-
of-the-art in many other tasks such as computer vision tasks[8, 9]. For image
classification, Vision Transformers (ViT)[10] reshape 2D images into a sequence
of flattened 2D non-overlapping patches, which are then used as input for the
transformer. For object detection, Detection Transformers (DETR) are composed
of ”a CNN backbone to extract a compact feature representation, an encoder-
decoder transformer, and a simple feed forward network (FFN) that makes the
final detection prediction.” as stated in the paper ”End-to-end object detection with
transformers” by N. Carion et al.[11]. These DETR models are outperforming the
CNN-based models and have become state-of-the-art models for object detection[9,
11, 12, 13]. Also when it comes to video classification are transformers currently
the go-to models[14, 15, 16, 17].

2.3 Image Classification 8

Figure 2.4: Transformer architecture from A. Vaswani et al.[7]. The inputs
are embedded and fed through Nx encoder layers with multi-head attention and
a feed-forward layer (left). The outputs are then fed through Nx decoder layers
with multi-head attention, a feed-forward layer and a masked multi-head attention
layer, followed by a linear layer and a softmax activation function (right).

2.3 Image Classification
Image classification is the task of assigning a label or class to an input image.
The objective is to train a model to accurately predict the correct class for an in-
put image from a predefined set of classes, such as [player, goalkeeper, referee, ball].
In 1998, Y. Lecun et al. introduced LeNet[18], a Convolutional Neural Network
(CNN) model designed for image classification. LeNet, a pioneering model in this
domain, continues to influence many state-of-the-art models.

The architecture of a CNN image classification model typically consists of multiple
convolutional layers with possible pooling layers and activation functions in be-

2.4 Object Detection and Tracking 9

Figure 2.5: LeNet architecture from the original paper[18]. It processes a 32x32
image through two convolutional layers, each followed by average pooling. The
output is flattened and passed through two fully-connected layers, and a final 10-
neuron layer for digit classification using softmax activation.

tween. Subsequently, one or more fully-connected layers follow, leading to a final
softmax layer for class probability predictions. The architecture of LeNet can be
seen in Figure 2.5.

As the amount of computer power available increased, several authors built on
top of LeNet and achieved even better results with larger CNNs. Models such as
AlexNet[19] increased the size of the input image and layers, while other models
such as VGG[20] and GoogLeNet[21] increased the number of layers. Another
ground-breaking innovation came with ResNet[6] in 2015, where identity short-
cuts were introduced to the outputs of each layer. This led to new state-of-the-art
results, and today ResNet models are often used as backbones in object detection
models, semantic segmentation models, video classification models and many more.

Furthermore, transformers, initially designed for Natural Language Processing
(NLP) tasks, have become state-of-the-art models in image classification tasks
as well. Vision Transformers (ViT)[10] reshape 2D images into a sequence of
flattened 2D non-overlapping patches, which are then used as input for the trans-
former. This approach has shown remarkable performance in image classification
tasks, rivaling traditional CNN-based models.

2.4 Object Detection and Tracking
Object detection is the computer vision task of locating objects within images or
videos. It entails finding bounding boxes around the objects as well as classifying
them. Before the deep learning era, object detection was done using hand-crafted
features, such as HOG[22] and feature pyramids. With the advances of convolu-
tional neural networks (CNNs) in image classification tasks, people started experi-
menting with these CNNs for object detection, which led to these models becoming
state-of-the-art in this area. These CNN object detection models can be split into

2.4 Object Detection and Tracking 10

two general categories: two-stage detectors and one-stage detectors.

Two-stage detectors: Also known as region-based methods, these were made
popular in 2013 by R. Girshick et al.[23] when they introduced a Region-Based
Convolutional Neural Network (R-CNN), an approach with two stages. The first
stage finds regions which potentially contain an object by grouping together sim-
ilar pixels since they most likely are of the same object. The second stage then
feeds these regions into a CNN image classifier to classify what the object is. This
original R-CNN model was quite slow, so to combat this Girshick and his team
later introduced Fast R-CNN[24] and Faster R-CNN[25].

One-stage detectors: These combine the region proposal and classification into
one single CNN. Since these methods only require one forward pass, they are gen-
erally faster than two-stage methods, and can even provide real-time object detec-
tion. However, the trade-off for this increase in speed is less accuracy compared to
the slower two-stage detectors. In 2015, Redmon et al. introduced YOLOv1[26],
which is a one-stage detector that uses dense predictions, that is it tries to predict
classes and bounding boxes for all possible positions in the image. Several im-
provements have been made to the YOLO model throughout the years[27, 28, 29,
30, 31]. Particularly Ultralytic’s YOLOv8[31] performs well, especially given its
ability to run in real-time. The YOLOv8 architecture can be seen in Appendix A.1.

Within the last couple of years, transformer models have also become state-of-
the-art models in object detection. Detection Transformers (DETR) are one such
example. They are composed of ”a CNN backbone to extract a compact feature
representation, an encoder-decoder transformer, and a simple feed forward net-
work (FFN) that makes the final detection prediction.” as stated in the paper
”End-to-end object detection with transformers” by N. Carion et al.[11]. These
DETR models outperform traditional CNN-based models and have become state-
of-the-art models for object detection tasks[9, 11, 12, 13].

Multi-object tracking is the task of tracking one or more objects through consec-
utive frames. It builds on top of object detection in that it still needs to detect
objects, but an additional requirement is now that it needs to keep track of the
identities of detected objects throughout the frames. Multi-object tracking models
are usually split up into two stages: detection and tracking. The detection is done
using an object detection model, e.g. YOLOv8 [31]. The tracking algorithm then
tries to link the objects in consecutive frames, e.g. by using the Kalman filter
to predict the next position of each object based on its previous trajectory and
velocity. Online multi-object trackers [32, 33, 34, 35] process data as it becomes
available, i.e., they do not have access to future data. This is useful for analysing
real-time videos, but can make it harder to track than for offline trackers [36, 37].

2.5 Video Classification 11

2.5 Video Classification
Video classification is the task of assigning a label or class to an input video.
Similar to image classification, the goal of video classification is to train a model
capable of accurately predicting the correct class for an input video from a prede-
fined set of classes, such as [walking, running, jumping]. Compared to still images.
videos can be very data heavy. Assuming a simple 8-second RGB video with a
frame rate of 25 frames per second and a resolution of 640x640 pixels, the total
number of pixels in the video clip (N) can be calculated as:

N = 8 · 25 · 640 · 640 · 3 = 245, 760, 000 pixels (2.5.1)
The substantial volume of data in just a short video clip underscores the computa-
tional challenges inherent in video classification. Consequently, models that take
all consecutive frames of the clips as input are difficult to train. To address these
challenges, recent advances in deep learning architectures have played a pivotal
role. Karen Simonyan and Andrew Zisserman[38] proposed a two-stream method,
where one stream focused on single frames and the other on optical flow. This also
allowed the models to take advantage of the existing image classification models
that have been pre-trained on large datasets. Several researches have built on top
of this foundation, by using things such as 3D convolutions[39, 40] and sampling
high resolution frames at low frame rates and low resolution frames at high frame
rates[41]. Another approach is to select a few frames from the clips at various
intervals, as L. Wang et al.[42] investigated with their temporal segment networks
(TSN).

Vision Transformers (ViT) have proved to be powerful tools for not just image
classification but also video classification tasks. ViTs operate by reshaping 2D
images from each frame of a video into a sequence of flattened 2D non-overlapping
patches. These patches serve as input for the transformer model. Leveraging the
self-attention mechanism, ViTs excel at capturing global dependencies across the
video frames effectively. Building on top of ViT[10], Arnab et al. [14] introduced
ViViT, a vision transformer designed explicitly for video understanding tasks.
Similarly, Bertasius et al. [15] proposed SpaceTime ViT, which extends ViTs to
exploit spatiotemporal information in videos. Tong et al. [16] and Wang et al.
[17] also showcased the effectiveness of ViTs in video classification by employing
methods like VideoMAE.

2.6 Temporal Action Localization
Temporal action localization is the task of localizing events or actions within videos.
Unlike video classification, where models predict the label of a video, temporal ac-
tion localization models predict the start and end times, as well as the labels,
of all actions occurring within a video. Methods for temporal action localization

2.6 Temporal Action Localization 12

can be roughly divided into two categories: anchor-based and anchor-free methods.

Anchor-based methods: First introduced by Wang et al. [42] in 2016, they
work by generating predefined anchor boxes at different temporal scales, similar
to object detection in images, and applying them at multiple timesteps within
the videos using a sliding window approach. These anchor boxes are then scored
based on their likelihood of containing an action, and high-scoring segments are
then classified. Later works have improved the anchor-based methods by using
different features to represent the videos, such as 3D convolutional features [43],
graph convolutional features [44] and transformer features [45].

Anchor-free methods: These directly predict both the temporal boundaries and
class of the actions without using anchors and were first proposed by Lin et al.
[46] in 2018 to the task of temporal action proposal generation, and were later
extended to the task of temporal action localization [47, 48, 49]. These methods
typically employ regression-based approaches to directly estimate the temporal
boundaries of actions without the need for predefined anchor boxes. Anchor-free
methods are often more flexible and efficient compared to anchor-based methods
since they do not require designing and tuning anchor boxes.

CHAPTER3
Related Work

The previous chapter explained the theory behind some of the methods and mod-
els used in this thesis, as well as provided some of the pioneering papers within
these topics. This chapter provides an overview of work more closely related to
the thesis topic of ”Temporal Localization of Group Activities in Football Videos”.

SoccerNet-v2: One dataset that has been a base for many similar projects is the
SoccerNet-v2 dataset[50], which is a large-scale dataset for video understanding
tasks in football. In addition to providing this impressive dataset they also create
yearly challenges[51, 52] in topics such as player and ball tracking, action spotting
and camera calibration.

Player and Ball Tracking: There has been several works in this topic, using
multi-object tracking to detect the players and ball[53, 54, 55, 56]. The third-
placed team[57] in the SoccerNet tracking challenge, utilized a separate ball-tracker
in addition to the player tracker, as the ball is harder to track due to its small size
and fast movement. Other works utilize several calibrated cameras for improved
tracking results[58, 59].

Sport Field Registration: This is the task of mapping the sport field onto the
images or video frames, by estimating the homography between the physical pitch
and the frame space of the video. Previous works have implemented this to create
a bird’s-eye mapping for sports such as hockey[60, 61], basketball[62], and more
relevantly, football[63].

Action Spotting: Action spotting in football is a critical task for understanding
game dynamics. It involves identifying specific actions or events in a video se-
quence. The SoccerNet action spotting challenge provided a baseline and dataset
for this task, which several works have expanded upon[51, 52, 64, 65, 66]. Due
to the limited data available, some works have focused on active learning frame-
works[67] and using tracking data[68].

13

14

Temporal Localization of Group Activities: This is the task of identifying
and locating occurrences of various activities involving multiple individuals in a
given video. Some works in this task include [69, 70]. In football, these group
activities could be certain tactics or play phases. If available, tracking data can
be used for this task[71].

Long-Form Video Understanding: This is the task of understanding videos
that are longer than just a few seconds. It is a complex task as the amount
of data in long videos is extremely large. This is an important task in football
analysis, where understanding the progression and context over longer periods of
time is essential. Some authors utilize a long-term feature bank spanning the entire
duration of the video to aid short-term video understanding models[72]. Others
have implemented transformer-based methods to tackle this problem [73, 74].

CHAPTER4
Dataset Description

This chapter aims to provide an overview of the datasets used throughout this
thesis. Additionally, we will describe the data preprocessing steps carried out. In
section 4.1, we describe the data received from DBU, which consists of recordings of
complete football games with phase annotations. Since this data does not contain
any player or line markings, another dataset was used to train a player detection
model. This dataset, SoccerNet-v2[50], is described in section 4.2.

4.1 DBU Data
This dataset contains recordings of 43 complete football games, captured with a
single camera. The camera is located high up and to the side of the pitch, giving a
view similar to watching a game on TV. With football games lasting 90 minutes,
plus a few additional minutes, this dataset comprises over 43·90 = 3870 minutes of
video, equating to 64.5 hours. The data includes annotations of the time periods
for all phases of play, as well as events such as shots, goals, throw-ins, etc., for
all games. While this thesis focuses solely on play phases, these additional events
could be valuable for future projects.

4.1.1 The Play Phases
Play phases are used to define the stage of a game. In the scope of this thesis we
will be working with nine unique phases: three attacking phases, three defending
phases, two transition phases and a ”none” phase for when the game is in neither
of the other phases. The phases are defined for the team attacking from left to
right, and are designed such that when team A is in attacking phase 1, team B is
in defending phase 1, and vice versa. Thus we only need to label the phases for
the team attacking from left to right. For future reference, phases labeled as ”VI”
followed by a number are when the team going from left to right is attacking and
the other team defending, and vice versa for phases labeled ”DE” followed by a
number. All of the phases are described below.

15

4.1 DBU Data 16

(a) VI 1

(b) VI 2

(c) VI 3

(d) DE 1

(e) DE 2

(f) DE 3

Figure 4.1: Examples of play phases. Figures a, b and c are examples of VI
phases - that is when the team attacking from left to right has the ball. Figures
d, e and f are DE phases which is when the other team is in possession of the ball.

4.1 DBU Data 17

Attacking / defending phase 1: In this phase, the attacking team has the ball
in a non-dangerous position, usually in their own half, and the defending team
is pressing the attacking team trying to win the ball back. This is usually the
first phase after the attacking team has received the ball. Figure 4.1a shows an
example of a game in phase ”VI 1”, that is the attacking phase 1 for the team
attacking from left to right and defending phase 1 for the other team. Figure
4.1d shows an example of a game in phase ”DE 1”, where the team attacking from
left to right is now defending in phase 1, and the other team is in attacking phase 1.

Attacking / defending phase 2: This is the second phase of an attack. In this
phase the defending team has stopped pressing the attacking team high up and
have dropped off to stand in a more compact defending shape. This means that
the attacking team now usually has the ball higher up the pitch, but still not in
a position that is threatening the defending team’s goal. Figure 4.1b shows an
example of a game in phase ”VI 2”, i.e. the attacking phase 2 for the team attack-
ing left to right, and defending phase 2 for the other team. Figure 4.1e shows an
example of a game in phase ”DE 2”.

Attacking / defending phase 3: This is the third and final attacking phase.
This phase is when the attacking team finds a way past the defending team and
gets into a dangerous position. This phase often ends up with the attacking team
either having a shot, attempting a cross or having a chance to score in another way.
Figure 4.1c shows an example of phase ”VI 3”, where the team attacking from left
to right is in the third and final attacking phase, and the other team is in the third
and final defending stage. Figure 4.1f shows an example of a game in phase ”DE 3”.

Transition phases: These phases are when one team loses the ball to the other
team and they start a counter-attack. Phases labeled ”VI-DE” represent situations
where the team attacking from left to right loses the ball, while ”DE-VI” phases
represent situations where the team attacking from right to left loses the ball. Fig-
ure 4.2 shows a sequence of frames from a ”VI-DE” phase. Note that these phases
do not include when a team kicks the ball out of play and loses possession that way.

The ”none” phase: This phase is when neither of the other phases are active.
This is usually when the ball is out of play for e.g. a goal kick or a throw-in, or
when there is a set piece such as a free-kick. It could also be in times when the
game is chaotic and there is no real structure, for example after a goalkeeper has
taken a goal-kick, and both teams are trying to win the ball. Examples of this
phase are visualized in Figure 4.3.

4.1 DBU Data 18

Figure 4.2: Sequence of frames from a ”VI-DE” transition phase. A player from
the attacking team passes the ball (left) which goes to the opposition team (middle)
who then start a counter attack (right).

(a) Corner (b) Free-kick (c) Goal-kick

Figure 4.3: Single-frame examples of the ”none” phase. Figure (a) shows an
example of a corner, Figure (b) shows an example of a free-kick and Figure (c)
shows an example of a goal-kick.

4.1.2 Data Preprocessing
The data received for this project was given in the form of videos of full football
games with corresponding xml files containing the timestamps of all play phases
and events. To prepare this data for the video classification model, it needed to
be split into short 8-second clips, which were obtained in two separate ways: Well-
defined clips containing only one play phase and consecutive clips from full games.
Both of these are defined below.

Well-defined clips: These clips were acquired by taking 8-second clips where the
whole duration of the clip contains only a single play phase. This was achieved
by going through all phases of a game that were at least 8 seconds long, and ex-
tracting as many non-overlapping 8-second sections as possible from each phase,
as visualized in Figure 4.4. This was done to create well-defined clips from which
the model is able to learn the unique characteristics of each play phase. These
were the clips used to train the video classification model.

4.1 DBU Data 19

Figure 4.4: Extracting well-defined clips from a game. The large blue rectangle
shows the timeline of the play phases of a section of a game, and the red rectangles
show the extracted 8-second clips.

Consecutive clips: These clips were acquired by going through a full game and
taking consecutive 8-second clips. This was achieved by extracting 8-second clips
at 8-second intervals, starting from the beginning of the game, as visualized in Fig-
ure 4.5. Running the video classification model on these consecutive clips would
then give the play phases of a full game. This was done in order to acquire the
predicted phases of a full game, which could then be fed into the transformer-based
model to get refined predictions. Some of these clips contained two or more play
phases within them if there was a change of phase during the 8-second clip. In
these cases the ground truth phase of the clip was set to the phase with the longest
duration within the clip.

Figure 4.5: Extracting consecutive clips from a game. The large blue rectangle
shows the timeline of the play phases of a section of a game, and the red rectangles
show the extracted 8-second clips.

No further data preprocessing was required at this stage, since the video classifi-
cation model itself further preprocessed the data in regards to the size, number of
frames and sampling rate when sampling data.

4.1.3 Data Split
After preprocessing the data, it was split into three subsets: a training set, a
validation set and a testing set. The data was divided in such a way that clips
from any particular game would only appear in one of these sets, ensuring the

4.1 DBU Data 20

Figure 4.6: Data Split: Out of the 43 games, 33 are allocated for training, 3
for validation, and 7 for testing purposes. Each split comprises two sets: one
consisting of well-defined clips and another consisting of consecutive clips.

model’s performance evaluation on unseen game data. The training set was uti-
lized for model training, the validation set for fine-tuning hyperparameters, and
the testing set for evaluating model performance. Each subset comprised two sets
of clips: one containing well-defined clips and another containing consecutive clips.

For the 43 games received from DBU, a split of 33-3-7 for training, validation, and
testing respectively was chosen, as depicted in Figure 4.6. A larger testing set was
chosen to enable testing on a diverse range of game scenarios. It is worth noting,
that all games in the training and validation sets maintained a framerate between
25 and 30 fps, while some games in the testing set had a framerate of 50 fps. This
variation allowed for the assessment of the model’s performance across different
framerate conditions.

4.1.4 Descriptive Statistics
In this section we will delve into some of the descriptive statistics of the dataset
in order to try and better understand the data. The statistics in this section
have been computed using a subset of the games consisting of the training and
validation set games. We will be looking into the number of occurrences and av-
erage duration of each play phase, as well as the evolution of phases during a game.

Occurrences and Duration of Phases: Table 4.1 displays the total number of
occurrences and average duration of each play phase. We can see that the average
duration of the matching attacking and defending phases e.g. ”VI 1” and ”DE
1” are very similar for all four phases, which can be seen as an indicator that the
phases are indeed the same. While there are a similar number of transition phases
each way (”VI-DE” and ”DE-VI”) we can see that the ”VI” team tends to have
more attacking phases 2 and 3 than the ”DE” team which has more attacking
phase 1 phases. This could be due to the home advantage that is usually seen in
football, where on average the home team has a higher tendency to win. Alterna-

4.1 DBU Data 21

Event Occurrences Average Duration (s)
VI 1 533 25.12
VI 2 895 32.32
VI 3 594 18.66

VI-DE 837 21.47
DE 1 797 25.40
DE 2 647 30.49
DE 3 435 16.65

DE-VI 819 20.79

Table 4.1: Occurrences and average duration of each phase of play.

tively, it could be due to human labeling inaccuracy, or simply a coincidence.

We can also see that phase 3 (”VI 3” and ”DE 3”), which is the final attacking
phase, has the shortest average duration. This makes sense, since this phase occurs
when the attacking team gets past the defending team, and thus these phases are
likely to end quickly as the attacking team has an attempt at goal or gets tackled.
The phase with the longest average duration is phase 2. This also makes sense, as
this is a phase where the team in possession of the ball is neither about to finish
their attack, nor being pressed hard by the opponent. Looking at the histograms
of the duration of each phase as seen in Figure 4.7, we can see that there are
several occurrences of phase 2 longer than 50 seconds.

Figure 4.7: Histogram of duration of play phases. We see that the final attacking
phases (VI 3 and DE 3), as well as the transition phases (VI-DE and DE-VI) are
generally shorter than the other phases.

Phase Evolution: Another aspect to look at is the evolution of phases, i.e. which
phases tend to follow each other. This can provide valuable information both for
the analysis and understanding of the game, as well as the objective of this thesis -
to create a model capable of predicting the phases of play throughout the duration
of a football game. From Figure 4.8 it can be seen that a lot of the time after one
of the phases it goes to a ”none” phase. This can be in cases where the ball goes

4.2 SoccerNet-v2 Dataset 22

Figure 4.8: Evolution of play phases during football games. Most phases both
follow and precede the ”none” phases, likely a cause of the ball going out of play.
Furthermore, we also see a progression where ”VI 2” often follows ”VI 1” and ”VI
3” often follows ”VI 2”, mimicking an in-game progression of an attack. The same
is seen for the ”DE” phases.

out for a throw-in, goal kick or corner, or when the other team commits a foul.
We also see that the ”none” phase is most often followed by phase 1, and then
phase 2. This is expected, as phase 1 is usually the start of an attack, while an
attack could also start directly in phase 2 if the defending team isn’t pressing high
up the pitch. When looking at the ”VI” phases and ignoring when they go to the
”none” phase, we see that ”VI 1” often goes to either ”VI 2”, ”VI 3” or ”VI-DE”
and that ”VI 2” usually goes to ”VI 3” or ”VI-DE” and ”VI 3” usually to ”VI-DE”.
This seems to follow a logical progression that an attacking phase either leads to
the next attacking phase, or the ball is lost. This is the same case for the ”DE”
phases.

4.2 SoccerNet-v2 Dataset
The SoccerNet-v2[50] tracking dataset consists of 12 complete football games from
the main camera including: 200 clips of 30 seconds with tracking data, one com-
plete 45-minute halftime annotated with tracking data, and the complete videos
for the 12 games. In this thesis we will be using a subset of this data comprising:
57 30-second clips for the training set and 49 30-second clips for the validation
set. The clips are 25 fps, and are stored in the form of 750 frames with annotated
tracking data. The image resolution is 1080p (1920x1080 pixels).

4.2 SoccerNet-v2 Dataset 23

4.2.1 Data Preprocessing
The SoccerNet-v2[50] data was used to train an Ultralytics YOLOv8 [31] player
detection model. To align the data with the YOLOv8 model’s requirements, cer-
tain modifications were necessary. The images themselves remained unchanged
and were simply relocated to designated training and validation directories.

The SoccerNet-v2 labels were all given in one big file for each 30-second clip, and
the boxes defined using the top-right corner and the width and height, given in
pixels. The YOLOv8 model requires that each image is accompanied by a corre-
sponding labels file containing bounding box coordinates. These coordinates must
be expressed as the bounding box’s middle point, width, and height relative to the
dimensions of the full image, ranging from 0 to 1. Thus, adjustments were needed
to get the labels files in the correct format.

Additionally, we wanted to experiment with things such as removing the labels for
balls and having separate classes for each team, so several iterations of labels files
were made. Finally, since a lot of the images were very similar, an option to only
use every tenth image was explored.

4.2.2 Data Augmentations
In order to increase the amount of training data without having to acquire new
images and tracking data, several data augmentations were made, and are listed
below:

Horizontal flips: Since an image of a football game still looks like a football
game image when mirrored, this was an obvious option for a way to augment the
data.

Brightness, contrast and sharpness: These were altered to augment the im-
ages while still having them look like games of football. Through visual inspection,
maximum values of 0.25, 0.25, and 0.5 respectively were decided upon.

Cropping: Another way of adding augmentations was to crop the images. It was
decided that a maximum of 25% should be cropped off any edge when applying
cropping to an image, to not lose too much information.

Examples of each of these augmentations can be seen in Figure 4.9. With these
augmentations, several iterations of the dataset were made, as described below.
Note that these augmentations were only applied to the training set.

• V0: Dataset containing all the original SoccerNet-v2 training and validation
images.

4.2 SoccerNet-v2 Dataset 24

• V1: Dataset containing 1/10th of all images in V0.

• V2: Dataset containing 1/10th of all images in V0 where each image has a
50% change of being flipped horizontally.

• V3: Dataset containing 1/10th of all images in V0, where each image has a
50% chance of having each of the data augmentations applied to it.

• V4: Dataset containing 1/5th of all images in V0, where each image has a
50% chance of having each of the data augmentations applied to it.

• V5: Dataset containing 1/3rd of all images in V0, where each image has a
50% chance of having each of the data augmentations applied to it.

(a) Original image. (b) Horizontal flip. (c) Cropped image.

(d) Decreased brightness. (e) Increased contrast (f) Increased sharpness.

Figure 4.9: Augmentations performed on a SoccerNet-v2 image.

CHAPTER5
Methods

The objective of this thesis is to develop a model capable of predicting the phase
of play at every stage of a football game. This chapter outlines the methodologies
employed to address this task, detailing the considerations and rationale behind
the chosen approach. In section 5.1, we describe some of the methodological con-
siderations we took into account when developing our solution. In section 5.2, our
two-stage solution is presented. Finally, in section 5.3, we explain the approach of
utilizing player and line detections.

5.1 Methodological Considerations
Length of games: Since a game of football lasts 90 minutes, it is not feasible to
create a model that takes a full game as input at once, as this would require too
much computer power. The number of pixels in a 90-minute RGB video at 25 fps
and a resolution of 512x512 can be calculated:

N = 90× 60× 25× 512× 512× 3 = 106, 168, 320, 000 pixels (5.1.1)
Since a video of a full game of football contains over 100 billion pixels, it would
be infeasible to make a model with such a large input. Therefore, it was decided
that the game should be split up into smaller clips.

Length of Clips: After analyzing the data, it was observed that the duration of
most play phases falls within the range of 20 to 40 seconds. Considering the limi-
tations of current video classification models, which are typically unable to process
lengthy videos efficiently, a decision was made to segment the games into shorter
8-second clips. This decision was backed by human analysis. Having looked at
numerous 8-second clips they were deemed long enough to determine the phase of
play. Although the duration of the clips were determined based on these factors,
it should be noted that further experimentation regarding the length of clips could
be conducted with additional time and resources.

25

5.2 The Model 26

One phase at a time: It is known that at any point during a football game,
exactly one phase of play will be active. With this in mind, it would be possible
to create a video classification model to detect phases of play in short clips, and
then apply this model to consecutive clips to get the phases of play throughout a
full game.

Phase evolution: Another known fact that could provide a boost for the model
is that some phases are more likely to follow each other. In section 4.1.4 we showed
that this was indeed the case, that some phases tend to follow each other, such
as ”VI 1” usually being followed by ”VI 2”, ”VI 3” or ”VI-DE”. This information
could be learned by incorporating a transformer-based model on sequences of the
original predictions.

Positional information: The phase of play obviously depends on the positions
of the players and the ball on the pitch, as this is part of what defines the phases.
We thus hypothesized that if it was possible to extract the positions of the players
and the ball, this information could be used for the model.

5.2 The Model
The final model design consists of two stages. The first stage is a video classifica-
tion model and the second stage is a transformer-based model that uses the output
features of the video classification model as input. In this section we describe these
models individually, as well as the pipeline of the combined model.

5.2.1 Stage 1: Video Classification Model
The video classification model takes as input 8-second clips and classifies them as
one of the nine phases of play. For this model, mmaction2’s implementation[75]
of Temporal Segment Networks (TSN)[42] was used. The TSN model was trained
on the well-defined clips acquired from the preprocessing of the DBU data, as de-
scribed in section 4.1.2.

The TSN model operates by sampling clips from num_clips evenly spaced seg-
ments of the input video. These clips have variable lengths, determined by the
clip_len parameter, which specifies the number of frames per clip. Additionally,
the frame interval between consecutive frames within each clip is controlled by
the frame_interval parameter. Feature representations of each of the clips are
acquired through a ResNet backbone. These features are then combined and fed
through a final linear layer and softmax activation function to get the output
probabilities. This sampling strategy allows the model to capture temporal infor-

5.2 The Model 27

Figure 5.1: TSN pipeline. In the example shown here, the input clip is split
into num_clips = 3 segments of length clip_len = 4, sampled at intervals of
frame_interval = 2 frames. Each of these segments are then fed through a ResNet
backbone, and their output features are combined. These combined features are
then fed through a linear layer and a softmax activation function to get the output
probabilities.

mation spanning the entire duration of the input video, facilitating effective action
recognition. The pipeline of this model can be seen in Figure 5.1.

5.2.2 Stage 2: Transformer-based Model
The transformer-based model processes a sequence of features to predict class
probabilities. This sequence of features is obtained by applying the video classifi-
cation model to consecutive clips and extracting the final layer of features (shown
as ”Combined features” in Figure 5.1). Given a lseq long sequence of features ex-
tracted from lseq consecutive clips, the model’s task is to predict the label of the
middle clip. The sequence of features gives the model added information about
the preceding and succeeding clips, which can help it in predicting the correct label.

The model architecture can be seen in Figure 5.2. It is inspired by that of the
transformer[7], but with a few alterations, notably it contains no decoder as the
output is not sequential. Our transformer-based model comprises:

• Input Projection: The input projection is a linear feed-forward layer that
projects the 2048-dimensional features onto a dmodel-dimensional layer, where
dmodel is the dimension of the encoder input. This transformation is applied
to all the features in the sequence, converting the dimensions from [lseq, 2048]
to [lseq, dmodel]. Essentially, it maps the input features to a lower-dimensional
space that the model can work with more effectively.

• Positional Encoding: The positional encoding adds positional informa-
tion to the lseq sets of features. It ensures that the model can distinguish

5.2 The Model 28

between features from different positions in the sequence, helping capture
temporal dependencies. It is implemented with a combination of sine and
cosine functions with different frequencies

• Transformer Encoder Layers: The model has nlayer encoder layers, each
of which contains multi-head attention, a feed-forward network and layer
normalization.

– Multi-Head Attention: Each encoder layer has nheads attention heads
with distinct queries, keys and values. The Scaled Dot-Product At-
tention function (Equation 2.2.1) is then performed on all of these in
parallel and the results are concatenated.

– Feed-Forward Network: Each encoder layer has a position-wise feed-
forward network that consists of two linear transformations with a
ReLU activation function in between. The input layer of dimension
dmodel is first mapped to a layer of dimension dff and then back to
a layer of dimension dmodel. Thus, the dimension of the model stays
constant throughout the encoder layers.

– Layer Normalization: Layer normalization is applied after both the
multi-head attention mechanism and the feed-forward network. It helps
stabilize the training process by normalizing the activations across the
feature dimension.

• Feed-Forward Layer: This final layer takes the encoder output of only the
middle clip. This is because that is the clip the model is trying to predict the
label of, and information from the preceding and succeeding clips is being
learnt in the encoder layers. The encoder output of dimension dmodel is then
mapped to a layer of dimension 9, followed by a softmax activation function
for classification.

Figure 5.2: Pipeline of transformer-based model. The input sequence of features
is fed through a feed-forward layer before a positional encoding is added. These are
then passed through nlayer encoder layers, each of which contains multi-head at-
tention, a feed-forward network and layer normalization. It is then passed through
a final linear layer and softmax activation function, resulting in the output prob-
abilities.

5.2 The Model 29

5.2.3 The Complete Model
Combining these two stages results in the complete model. The pipeline of this
model is depicted in Figure 5.3, and can be expressed in these steps:

1. The full football game is split up into consecutive 8-second clips.

2. Each of these clips are classified through the video classification model de-
scribed in section 5.2.1.

3. The features of these clips are extracted and combined into sequences.

4. These features are passed to the transformer-based model described in sec-
tion 5.2.2 which outputs the predicted class.

5. Consecutive class predictions are concatenated to get the predicted phase of
play throughout the whole duration of the game.

Figure 5.3: Pipeline of the complete model. A full game is split into 8-second clips
from which segments are extracted and fed through a ResNet backbone to acquire
a feature representation of these clips. Sequences of features from consecutive clips
are then fed to the transformer-based model to get a phase prediction.

5.3 Player and Line Detection Input Clips 30

5.3 Player and Line Detection Input Clips
To investigate whether the positional information of players alone could determine
the phase of play, we experimented with replacing the original video clips with
simplified versions containing only pitch lines and players represented as colored
dots. The rationale behind this approach was to retain positional information
while simplifying the input data. Here’s how we implemented this approach:

1. We detected the players using a YOLOv8 object detection model trained on
the SoccerNet-v2 dataset. The model was trained to detect players, goalkeep-
ers, referees and balls. For this approach we only cared about the players,
so all other detections were ignored.

2. The detected players were then split into two teams using KMeans clustering.
This was achieved by resizing all the detected player bounding boxes to the
same dimension, and then performing KMeans clustering on these images.
Figure 5.4b shows the clustered bounding boxes. Note that there are also
a few black bounding boxes, which was due to the fact that we actually
grouped the detected players into three clusters and ignored the smallest
cluster. We did this because the player detection model would often have a
few wrong detections (goalkeeper, substitute, item, etc.) and this proved to
be an efficient way of removing those.

3. We then used a pretrained DeepLabV3 segmentation model to detect the
pitch lines. This gave us a segmentation image as can be seen in Figure 5.4c.

4. The detected players were then mapped onto the pitch line image, as can be
seen in Figure 5.4d. We used the center of the base of the bounding boxes
as the player locations, as this is where their feet are.

5. This process was repeated for all frames in a clip and combined into a video.

5.3 Player and Line Detection Input Clips 31

(a) Original image. (b) Original image with bounding boxes.

(c) Image of detected pitch lines. (d) Image of detected lines with detected play-
ers mapped onto it.

Figure 5.4: Example of how a player and line detection frame is made. From
the original image (a), players are detected using our YOLOv8 player detection
model trained on the SoccerNet-v2 dataset. These players are then clustered into
two teams using KMeans clustering on the bounding boxes (b). A DeepLabV3
segmentation model is used to detect the pitch lines (c), and finally the detected
and clustered players are mapped onto this image (d).

CHAPTER6
Experiments and Results

This chapter presents the experiments conducted and the results obtained. In
Section 6.1, we describe the training experiments conducted for the video classifi-
cation model and compare its performance with human accuracy. Additionally, we
analyze the model’s learned features through visualization. Section 6.2 details the
training experiments for the transformer-based model and showcases the improved
performance achieved. We also provide an analysis of the features learned by this
model. Finally, in Section 6.3 we discuss the experiments carried out to enhance
the YOLOv8 player detection model and present the results obtained when using
the player and line detection clips as input for the video classification model.

The hardware for all of these experiments were provided by DTU’s High Perfor-
mance Computing (HPC) services. All models were trained and evaluated on either
Tesla V100-PCIE-16GB, Tesla V100-PCIE-32GB, NVIDIA A100-PCIE-40GB or
NVIDIA A100-PCIE-80GB GPUs. When mentioning training or inference times,
the specific GPU used will be stated.

6.1 TSN Video Classification
In this section, we delve into the experiments and results of the TSN video classifi-
cation model. Section 6.1.1 details the experimental setup and evaluation metrics.
Section 6.1.2 shows the experiments and steps taken to optimize the model. The
results of our model are presented in section 6.1.3 and compared to human accu-
racy scores in section 6.1.4. In section 6.1.5, we conduct an analysis of the model’s
features, and finally in section 6.1.6 we provide further analysis of our model.

6.1.1 Experimental Setup and Evaluation Metrics
The experimental setup and evaluation metrics for the TSN video classification
model are outlined below.

32

6.1 TSN Video Classification 33

• Dataset

– For these experiments, the DBU datasets consisting of the well-defined
clips were utilized.

– During training, the models were trained on the training set and vali-
dated on the validation set. The best model was then evaluated on the
test set.

• Evaluation Metrics

– Top 1 Accuracy: This metric represents the proportion of correctly
predicted labels among the total predictions made by the model.

– Top 5 Accuracy: This metric indicates the proportion of predictions
where the correct label is among the top 5 highest probabilities pre-
dicted by the model. In other words, it measures how often the model
correctly identifies the correct label among its top 5 predictions.

– Mean Top 1 Accuracy: This metric calculates the average accuracy
across all classes, where accuracy for each class is computed as the num-
ber of correct predictions of that class divided by the total occurrences
of that class.

• Training Procedure

– All models were trained for a maximum of 100 epochs, with a warm-up
period of 10 epochs. Early stopping was employed if a training run
exhibited clear signs of stagnation or decline in performance.

– Stochastic gradient descent (SGD) was used for optimizing, with a
learning rate of 0.01, momentum of 0.9 and weight decay of 0.0001.

– The iteration with the highest top 1 accuracy on the validation set was
considered the best-performing model for evaluation.

– The hyperparameters we looked to optimize were the clip_len, interval
and num_clips parameters. The num_clips parameter denotes the
number of segments sampled from the input video, and clip_len and
interval denote the length and frame sampling rate of these segments
respectively.

6.1.2 Training Experiments
In our initial experiment, we delved into the impact of segment length on the
model’s performance. Specifically, we maintained a frame interval of 1 and a con-
stant number of clips at 2, while systematically altering the clip_len parameter.
The outcomes of these investigations are depicted in Figure 6.1. Based on these
findings, we opted for segments with a clip length of 10, as this achieved the high-
est mean top 1 accuracy and second highest top 1 and top 5 accuracy.

6.1 TSN Video Classification 34

Figure 6.1: Performance evaluation of the TSN video classification model with
varying clip_len parameters. We see that setting the clip_len = 10 results in the
best performance on mean top 1 accuracy and second best performance on top 1
and top 5 accuracy.

In our next experiment we wanted to explore the impact of frame sampling interval
on model performance. Here, we maintained the number of clips at 2 and kept
the clip_len parameter consistent at the previously determined value of 10. We
systematically adjusted the interval parameter in order to identify the optimal
value. The results of these experiments are presented in Figure 6.2. From this
experiment we found that keeping the frame sampling rate at interval = 1 was
the optimal solution, as this yielded the best scores in both top 1 accuracy and
mean top 1 accuracy while also achieving a decent score in top 5 accuracy.

Figure 6.2: Performance evaluation of the TSN video classification model with
varying interval parameters. We see that the original value of interval = 1 is
optimal, as this yields both the best top 1 accuracy and mean top 1 accuracy
scores.

In our final investigation, we examined the impact of the number of segments
the input video was spilt into, where our initial choice of 2 proved to be optimal.
Consequently, the ideal model configuration consisted of the input video being split
into two segments, each comprising 10 frames, sampled at 1-frame intervals. This

6.1 TSN Video Classification 35

configuration yielded a top 1 accuracy of 65.91% on the validation set of well-
defined clips. A table of all experiments carried out can be found in Appendix
A.2.

6.1.3 Results
On the test set consisting of well-defined clips, the model achieved a top 1 accuracy
of 67.52%, which surprisingly is even better than on the validation set. To gain
deeper insights into its strengths and weaknesses, we can analyze the confusion
matrix presented in Figure 6.3.

Figure 6.3: Confusion matrix of our model’s predictions versus the ground truths,
showing the number of occurrences for each predicted and true class. Generally
our model’s prediction match the ground truths. However, we see our model
sometimes struggles to differentiate between ”VI 1” and ”VI 2” and ”DE 1” and
”DE 2”. Furthermore, the transition phases (VI-DE and DE-VI) also cause some
confusion.

Notably, the model encounters challenges distinguishing between ”VI 1” and ”VI
2”, as well as ”DE 1” and ”DE 2”, which is understandable given the similarities
between these phases. In fact, one of the labelers at DBU even said that in some
cases he is unsure if a stage of a game should be labeled as phase 1 or phase 2.
Another area where the model struggles is the transitional phases ”VI-DE” and
”DE-VI”. Here the model sometimes mixes up the two transitional phases, or
predicts a transitional phase when it in fact was an attacking or defending phase,
or vice versa. This behaviour could stem from the fact that transitional phases are
labeled also while the team that won possession is in the counter attack. Thus,
the exact moment of transition might not be captured during the 8-second clip.

6.1 TSN Video Classification 36

Figure 6.4: Bar plot of output probabilities of our model on a sample of clips
from the test set. The blue bars show the output probabilities for each phase,
and the bars marked with red denote the ground truth phase. Clip 524 shows an
example of the model struggling with the transition phase, and clips 1003, 1487
and 1899 show the model struggling to differentiate between phases 1 and 2, and
phases 2 and 3.

We can further study the behaviour of our model by looking at the output prob-
abilities on a sample of the test set, as shown in Figure 6.4. Here we see that
the model is often very sure in its predictions, and also correct, e.g. clips 269,
354, 753 and 908. In clip 524 we see a case where the model predicts a ”DE-VI”
transition phase, but the actual phase is ”VI 3”. We see the model struggles to
differentiate between phase 1 and 2 in clips 1003 and 1899, and in clip 1487 we see
it struggles to differentiate between phase 2 and 3. To try and understand which
clips our model is good at and which clips it struggles with we will visualize some
of the clips. In Figure 6.5 we show examples of clips where the model predicts the
correct label, and in Figure 6.6 we show examples where it predicts the wrong label.

6.1 TSN Video Classification 37

(a) Clip 237. Here our model correctly predicts ”DE 1”. We see the team attacking from right
to left passes the ball around in their own half while the other team is pressing, so this is clearly
a phase ”DE 1”.

(b) Clip 354. Here our model correctly predicts ”VI 1”. The goalkeeper from the team attacking
from left to right has the ball in his own box, so this is also a clear case of phase ”VI 1”.

(c) Clip 593. Here our model has a bit more uncertainty, but still correctly predicts ”DE 3”. In
this clip we see the team going from right to left gets in behind the defending team and puts a
cross into the box.

(d) Clip 1610. Here our model correctly predicts ”none”, as the ball is clearly not in play.

(e) Clip 1612. Here our model correctly predicts ”VI-DE”. We see that the team attacking from
left to right is in possession of the ball, but lose it due to a bad touch, and the other team starts
a counter attack.

Figure 6.5: Examples of clips where our model predicts the correct label.

6.1 TSN Video Classification 38

(a) Clip 524. Here our model wrongly predicts ”DE-VI”. The correct phase is ”VI 3”, which is
our model’s second prediction. We see the team attacking from left to right has the ball a bit
past the halfway line and moves up the pitch and gets close to the other team’s penalty box.
Our model is likely confused here due to the fast pace of the attack looking like a counter attack
that could occur right after having won possession, like in a ”DE-VI” phase.

(b) Clip 1487. Here our model predicts ”VI 2” while the correct label is ”VI 3”. Looking at the
clip, however, it seems as though this is indeed a ”VI 2”, as the team attacking from left to right
is in possession of the ball quite high up the pitch, but have not broken through the other team’s
defensive lines. This could be a labeling inaccuracy, and is likely because a ”VI 3” phase is going
to occur right after this clip, and when labeling they set the start time of that phase too early.

(c) Clip 1899. Here our model wrongly predicts ”VI 1” while the correct label is ”VI 2”, which
is our model’s second prediction. Looking at the clip we can see the confusion. The team going
from left to right has the ball in their own half, but the other team is not pressing at the start,
which shows characteristics of both phase ”VI 1” and ”VI 2”.

(d) Clip 2230. Here our model predicts ”VI 1” but the correct label is ”VI 2”. Looking at this
clip, however, it clearly looks like it is indeed a phase ”VI 1”, as the team attacking from left to
right has the ball in their own half and the other team is pressing high.

Figure 6.6: Examples of clips where our model predicts the wrong label.

We see in Figure 6.6 that some cases where our model predicts the wrong phase,
one could argue that the label is incorrect and that our model’s guess was indeed
correct, e.g. clips 1487 and 2230. In other cases, such as clips 524 and 1899,
the confusion of our model is understandable as there are similarities between the

6.1 TSN Video Classification 39

wrongly predicted phase and the correct phase. In most cases, however, we see
that if our model does not predict the correct label, its second or third guess would
usually be correct.

We want to investigate our model’s accuracy when looking at both top 1, top 2,
top 3, etc predictions. Figure 6.7 shows the top 1, 2, ... 9 accuracy of each of the 7
test games individually. We see that there is indeed a drastic increase in accuracy
when we look at the top 2 accuracy, and also a good further increase when we go
from top 2 to top 3. For most games, the top 3 accuracy is above 90%. Another
thing we notice is that there is a large difference in performance for each of the
test games, with one of the games having a top 1 accuracy of only 59.78%, and
another a top 1 accuracy of 78.74%!

Figure 6.7: Top 1, 2, ... 9 accuracy of our TSN video classification model on
each of the 7 test games. We see a great increase from top 1 to top 2 accuracy,
and a further good increase to top 3 accuracy. We also see a large difference in
performance between the individual test games.

There could be several reasons as to why the model performs much better on some
of the test games compared to others. One reason could be due to the labeling
of the data. Some games might not be labeled very precisely, so it could be that
the model is in fact predicting the right phase, but it has been labeled incorrectly
in the dataset, as we saw in some of the example clips in Figure 6.6. Another
reason could be the nature of the games themselves. Camera angle, colors, tactics,
etc. could all have an effect on the prediction abilities of the model. A manual
inspection of the games did not show any inherent visual reasons why there is such
a large variety in performances. Interestingly, the test games with a frame rate of
50 fps (game 1, game 4, game 5) are not among the lowest scoring games, despite
the model being trained purely on games of frames rates between 25 and 30 fps.

A final observation we would like to make is the inference time of the model.

6.1 TSN Video Classification 40

Running on a NVIDIA-A100-80GB-PCIe GPU resulted in an average inference
time of 0.47 seconds per 8-second clip. This means that inference over a full 90-
minute game, which contains 90 · 60/8 = 675 consecutive 8-second clips will take
a total of 675 · 0.47 = 317.25 seconds, less than 5.5 minutes. This shows that our
model is indeed efficient.

6.1.4 Human Comparison
In order to get a better understanding of how good these results are, we decided
to test our model against humans. We created a subset consisting of 72 clips,
eight clips of each of the nine unique phases, drawn at random from the validation
set of well-defined clips, and asked humans with an understanding of football to
predict the label of each clip. As can be seen in Figure 6.8, our model outperforms
everyone, even a human expert within this field.

Figure 6.8: Top 1 accuracy of our model compared to humans. Our model
(purple) outperforms normal humans with a knowledge of football (green) as well
as human experts in this field (blue).

Our model’s top 1 accuracy of 75% on this subset is much larger than on the com-
plete validation set, which suggests that this might have been a slightly ”easy”
subset. However, it was the same set for the humans taking this, so we can still
conclude that our model outperforms even human experts.

In figure 6.9, we present the confusion matrix depicting the percentage of clips
correctly predicted by both our model and humans, incorrectly predicted by both,
or correctly predicted by one and incorrectly by the other. For human predictions
we used the majority vote, resorting to the human expert’s vote in the event of
a tie. We see that 51.4% of the clips were correctly predicted by both our model
and humans. Interestingly, only 6.9% of clips were wrongly predicted by both

6.1 TSN Video Classification 41

Figure 6.9: Confusion matrix of correct and wrong predictions of our model and
humans. The majority of clips are accurately predicted by both our model and
humans, with only 6.9% of clips being incorrectly predicted by both.

our model and humans. The relatively high number of occurrences where our
model predicts the correct label and humans do not (23.6%) suggests that our
model learns some trends in the data that are difficult for humans to pick up on.
For example, our model is good at differentiating between a counter attack and a
phase 3 attack, which humans struggle with when the change in possession does
not occur during the clip. It also suggests that our model picks up on trends that
are not consistent with the definitions of the phases. For example, at goal kicks
our model might predict a phase 1, despite the ball being out of play. This is likely
a result of the phases generally being labeled to begin too early.

6.1.5 Feature Analysis
To gain insights into our model’s learning process, we conducted an analysis of its
last layer of features. Initially, we extracted the feature representation of input
clips post-model processing by removing the final linear layer during testing. We
then employed T-distributed Stochastic Neighbor Embedding (t-SNE)[76] to re-
duce the 2048-dimensional features to 2 dimensions, facilitating visualization. This
dimensionality reduction was carried out using sklearn’s t-SNE implementation.
Figure 6.10 illustrates the 2D feature representation of all input clips, with each
phase of play depicted in distinct colors.

Upon examining the plot, a distinct segregation emerges between attacking phases
(VI) and defending phases (DE). Within the cluster of attacking phases (blue),
we observe a sequential arrangement where ”VI 1” is adjacent to ”VI 2”, and ”VI
2” is adjacent to ”VI 3”, illustrating a sequential progression of phases. This se-
quential trend can also be seen within the cluster of defending phases (orange).
Transitional phases (”VI-DE” and ”DE-VI”) are positioned between the attacking

6.1 TSN Video Classification 42

Figure 6.10: 2D representation of features from all clips. The features were
reduced to two dimensions using t-SNE. We notice a separation of attacking phases
(blue) and defending phases (orange). Additionally, ”VI 1” is next to ”VI 2”, and
”VI 2” is next to ”VI 3”, showcasing a similarity between phase 1 and 2 and phase
2 and 3. This similarity can also be seen with the defending phases.

and defending clusters, aligning with the fact that these phases occur when ball
possession changes between teams. Moreover, a cyclic pattern emerges as we tra-
verse the plot counterclockwise, passing through distinct clusters of phases: ”VI
1”, ”VI 2”, ”VI 3”, ”VI-DE”, ”DE 1”, ”DE 2”, ”DE 3”, ”DE-VI”, and returning to
”VI 1”. This pattern could mimic an in-game situation where the VI team has the
ball and progresses through the attacking phases (”VI 1”, ”VI 2”, ”VI 3”) before
losing possession to the other team (”VI-DE”) and then has to defend as the other
team progresses through the phases (”DE 1”, ”DE 2”, ”DE 3”).

We see a few odd occurrences within the graph where there seems to be a few
small clusters containing all play phases scattered around. These smaller clusters
seem to also follow the trends described before, so we hypothesized that each
of these could be a complete game in itself. Figure 6.11 shows the 2D feature
representation where each game has been colored distinctively. From this plot we
see that generally, the 2D feature representation of the clips for all games seems
to be very scattered with a few exceptions. For example, in the center near the
top we see a large cluster of feature representations from the game with ID 36.

6.1 TSN Video Classification 43

Figure 6.11: 2D representation of features from all clips with each game colored
differently. We have highlighted some of the games where all the clips are clustered
closely together.

(a) Game 3 (b) Game 25

(c) Game 36 (d) Game 52

Figure 6.12: 2D representation of features for individual games. We see that
each of these follow the same patterns mentioned before.

6.2 Transformer-based Model 44

The reason why certain games are clustered together could be due to certain char-
acteristics of those games such as camera angle, color of the teams or tactics. When
we perform t-SNE on these games individually to get a 2D feature representation,
as shown in Figure 6.12, we see that these games still follow the overall patterns
mentioned before.

6.1.6 Further Analysis
We carried out a few extra experiments to get an even better understanding of
our model, as well as what is required for a model to perform well. Initially, we
trained a model on single frames to see whether it would be possible to predict the
phase of play from a still image. This resulted in an accuracy of 58.43%. While
this is not completely terrible, it is still almost 10% less than our original model,
which goes to show that it is important to include several frames from the input
clip.

Another interesting result occurred when we tested our model on clips that had
been reversed. When we did this, we found that the accuracy remained nearly iden-
tical to that of normal clips. A closer examination of our TSN video classification
model revealed that it simply combines features by averaging the representation
across all frames. This suggests that our model may not be fully utilizing the
temporal dynamics of the input clips, as it disregards the order of frames.

6.2 Transformer-based Model
In this section we will present the experiments and results related to stage two of
our solution - the transformer-based model. The experimental setup and evalua-
tion metrics are described in section 6.2.1. In section 6.2.2 the experiments carried
out to optimize the model are described, and the results are presented in section
6.2.3. Finally, in section 6.2.4 we will again analyse the feature representation of
the model.

6.2.1 Experimental Setup and Evaluation Metrics
The experimental setup and evaluation metrics for the transformer-based models
are outlined below

• Dataset

– For these experiments we used the DBU datasets consisting of the con-
secutive clips.

– We extracted the features of these clips using our TSN video classifica-
tion model.

– We then combined sequences of these, which was the input used for our
transformer-based model.

6.2 Transformer-based Model 45

– During training, the models were trained on the training set and vali-
dated on the validation set. The final model was then evaluated on the
test set.

• Evaluation Metrics

– Top 1 Accuracy: This metric represents the proportion of correctly
predicted labels among the total predictions made by the model.

• Training Procedure

– All models were trained for 100 epochs. During the first 10 epochs
the data was sampled using a weighted random sampler, and for the
remaining epochs a random sampler was used.

– The model was trained using the Adam optimizer. We configured the
optimizer with a learning rate of 0.0001, the beta parameters as (0.9,
0.98) and the epsilon value as 1e-9 to avoid division by zero.

– The iteration with the highest top 1 accuracy on the validation set was
considered the best-performing model for evaluation.

– The hyperparameters we looked to optimize were the dropout rate,
dropout, sequence length, lseq, and the hyperparameters related to the
size of the model: dmodel, dff , nlayers, nheads.

6.2.2 Training Experiments
Through some initial testing we found that setting the parameters lseq = 11,
dmodel = 64 and dff = 128 proved to be good values. To limit the amount of
computational resources and experiments required we decided to stick with these
values. We investigated the effect of dropout rate, the number of layers and the
number of heads by training models with varying dropout, nheads and nlayers pa-
rameters in a grid-search way. The results are visualized in Figure 6.13.

Initially we see that setting the dropout to 0.1 or 0.2 leads to the best accuracy
for all combinations of nheads and nlayers. Furthermore, we see that the optimal
number of layers is between 4 and 10. It is a bit harder to tell what the optimal
number of heads should be, but generally it seems like the more the better. The
configuration that resulted in the best top 1 accuracy was 64 heads and 4 layers
with a dropout of 0.2, which yielded a top 1 accuracy of 73.37% on the validation
set consisting of consecutive clips.

6.2 Transformer-based Model 46

(a) dropout=0 (b) dropout=0.1

(c) dropout=0.2 (d) dropout=0.3

(e) dropout=0.4 (f) dropout=0.5

Figure 6.13: Top 1 accuracy of transformer-based model with varying hyperpa-
rameters. The parameters lseq = 11, dmodel = 64 and dff = 128 were kept constant
while the number of heads and number of layers were varied. The experiment was
performed with different dropout values. We see that the best dropout values are
0.1 and 0.2, and that optimal number of layers is between 4 and 10. The combi-
nation of hyperparameters that resulted in the best top 1 accuracy was 64 heads
and 4 layers with a dropout of 0.2, which yielded a top 1 accuracy of 73.37%.

6.2 Transformer-based Model 47

6.2.3 Results
We tested the effects of applying this transformer-based model to the features
extracted from the TSN video classification model. For this we used the test set
consisting of consecutive clips. We achieved a top 1 accuracy of 71.72% when
applying the transformer-based model to the features extracted from the video
classification model. This is much better than the top 1 accuracy when only using
the video classification model, which was 64.08% on the same set. To get an idea
of how this model performs better, we can look at the precision and recall scores
for each phase of play, as visualized in Figure 6.14.

Figure 6.14: Precision and recall scores for all phases for the original TSN video
classification predictions (red) and the refined predictions from the transformer-
based model (blue). Some of the recall scores for the refined predictions are better
than the original predictions, and some are worse. However, precision scores are
drastically increased for all phases, except the ”none” phase.

From this we see the recall is increased for some of the phases, but decreased for
others when we refine the results using our transformer-based model. The preci-
sion however, is increased for all phases except the ”none” phase. This suggests
that this refined model only predicts a phase that is not ”none” when it is more
sure in its decision. This is also what causes the recall to be slightly lower for some
of the phases.

Another consequence of this is that the refined results are more likely to predict
a ”none” phase - both when it is correct and when it is wrong. Comparing the
confusion matrices of the original predictions of the video classification model and
the refined predictions of the transformer-based model, as visualized in Figure
6.15, also shows this. We see that for most phases, if our model does not predict
the correct phase, it will predict ”none”. We also see here that our refined model
does get more correct predictions. Similar to the video classification model, this
model also struggles with phases ”VI 1” and ”VI 2”, ”VI 2” and ”VI 3”, ”DE
1” and ”DE 2” and ”DE 2” and ”DE 3”. This could still be partly due to some
labeling inaccuracies, as were discussed in section 6.1.3. It could also be due to
the similarities of these phases.

6.2 Transformer-based Model 48

Figure 6.15: Confusion matrix of the predictions for our original TSN video
classification model (left), and our refined predictions using the transformer-based
model (right). They show the number of occurrences for each predicted and true
class. Note the high number of occurrences where the models correctly predict
”none”, this is due to the large number of ”none” phases in the test set consisting
of consecutive clips.

We would like to see how our model performs on a consecutive section of a football
game. In Figure 6.16 we show the predictions of the original TSN video classifica-
tion model on a full 45-minute half of one of the test games, as well as the refined
predictions achieved from applying the transformer-based model to the features of
the original predictions. We see that the refined predictions fit the ground truths
much better than the original predictions. Particularly, these refined predictions
are less likely to jump from one phase to another and back, as can be seen for
example from second 620 to 700 and second 1100 to 1150.

A final observation is that running inference with this transformer-based model is
extremely fast. Running inference on all seven test games takes only a few seconds.
Thus, the total time of stage one and stage two combined is still only 5.5 minutes
for a complete 90-minute game.

6.2 Transformer-based Model 49

Figure 6.16: Original TSN video classification predictions (red) and refined pre-
dictions (green) over a complete half of one of the test games. The refined predic-
tions fit the ground truths much better than the original predictions and appear
more stable.

6.2 Transformer-based Model 50

6.2.4 Feature Analysis
We will now investigate the feature representation of the clips after being passed
through both the TSN video classification model and the transformer-based model.
To do this we first extracted the feature representation of all well-defined clips from
the TSN model. We subsequently fed sequences of each of these feature represen-
tations into our transformer-based model, and extracted the final 64-dimensional
layer of features. We then employed T-distributed Stochastic Neighbor Embed-
ding (t-SNE) to reduce the 64-dimensional features to two dimensions. This is
visualized in Figure 6.17.

Figure 6.17: 2D representation of features from all clips after being passed
through the transformer-based model. We notice a clear separation of every single
phase. Unlike the feature representation of the TSN video classification model,
there does not appear to be the same grouping of the attacking phases (blue) and
defending phases (orange).

We notice that there are distinct clusters of play phase. Although not as apparent
as with the feature representation of clips that had only been fed through the TSN
video classification model, these clusters seem to also be grouped in attacking and
defending phases. Certainly, phases ”DE 1”, ”DE 2” and ”DE 3” are near each
other, and so are phases ”VI 2” and ”VI 3”. One thing that is not similar here
is that these clusters do not follow the same cyclic pattern, instead each cluster
seems to be more isolated.

6.3 Player and Line Detection Clips 51

6.3 Player and Line Detection Clips
In this section we will describe the experiments and results of the alternative
approach mentioned in section 5.3, the player and line detection clips method.
The main experiments for this involved improving the YOLOv8 player detection
model, which is described in sections 6.3.1 and 6.3.2. The player and line detection
clips were then used as input for the video classification model, and those results
are presented in section 6.3.3.

6.3.1 Experimental Setup and Evaluation Metrics
The experimental setup and evaluation metrics for the YOLOv8 player detection
models are outlined below.

• Dataset

– All models were tested and validated on the SoccerNet-v2 validation
set described in section 4.2. During training, validation was performed
on a subset comprising 1/10th of the complete validation set to speed
up the process.

– The models were trained on the different augmented versions of the
training sets, for comparability of these augmentations.

• Evaluation Metrics

– Precision: This metric quantifies the model’s ability to accurately
localize and predict objects. It is computed as the ratio of true positive
predictions to the total number of positive predictions.

Precision =
TP

TP + FP
(6.3.1)

– Recall: This metric measures the proportion of actual objects detected
by the model. It is calculated as the ratio of true positive predictions
to the total number of actual positive instances.

Recall = TP

TP + FN
(6.3.2)

– mAP50 (Mean Average Precision at IoU 50%): This metric com-
putes the average precision of the model with an IoU (Intersection over
Union) threshold set to 50%. I.e., this is the number of predicted bound-
ing boxes with an IoU of at least 50% with a ground truth bounding
box of the same class, divided by the total number of predictions.

– mAP50-95 (Mean Average Precision across IoU 50-95): This
metric calculates the average precision of the model across IoU thresh-
olds ranging from 50% to 95%.

6.3 Player and Line Detection Clips 52

• Training Procedure

– The YOLOv8 models were trained for 300 epochs with a patience of
200 for early stopping.

– The best-performing model, determined by performance on the valida-
tion set, was selected for evaluation on the complete validation set.

6.3.2 YOLOv8 Training Experiments and Results
For a baseline, the pretrained nano (yolov8n), small (yolov8s), medium (yolov8m),
large (yolov8l) and extra-large (yolov8x) YOLOv8 models were run on the SoccerNet-
v2 validation set. These baseline models have not been trained to be able to dis-
tinguish between referees, players and goalkeepers, so the labels of all these classes
were changed to ”person”, and the balls are under the label ”sports ball”. The
performances of these models can be seen in Figure 6.18.

Figure 6.18: Performance of the YOLOv8 baseline models on the SoccerNet-v2
validation set. We see that the larger models perform better in all metrics. We
also see that the models find it much harder to detect the balls than the persons.

6.3 Player and Line Detection Clips 53

Overall we see that the larger models perform better than their smaller counter-
parts in all metrics. It is only when we go from the large model to the extra-large
model that it performs worse in one of the metrics - the precision score for the
person class. Overall however, the extra-large model outperforms all other models.
One thing that is clear is that all of the models struggle when it comes to detecting
the sports balls correctly. This is due to the balls’ small size and fast movement,
as well as the fact that they are sometimes partly or fully hidden behind a player.

One thing to take into account with these baseline models is that their performance
could be hindered due to the fact they have been trained to detect all persons in
the frame. The SoccerNet-v2 dataset contains persons such a medics, substitutes
and managers that are not labeled, and thus predicting these as a person would
count as a false positive prediction. Another thing that is worth noticing is that
all these models can be run in real-time, with the extra-large model running infer-
ence at 100 fps on a Tesla V100-PCIE-32GB. While this is not a necessity for this
problem, it could be useful for other tasks.

In order to achieve better results and to be able to distinguish between players
and other persons such as referees and managers, YOLOv8 models were trained on
the augmented SoccerNet-v2 datasets described in section 4.2. The full analysis
of the experiments carried out for this hyperparameter tuning can be found in
Appendix A.3. It was found that in order to get the best results, the very large
model (yolov8x) should be trained on the v4 dataset on images of size 1280x1280
pixels and a momentum value of 0.85. The performance of this model is presented
in Figure 6.19.

Figure 6.19: Performance of the final YOLOv8 model on the SoccerNet-v2 vali-
dation set. The yolov8x baseline was trained on the v4 dataset on images of size
1280x1280 pixels and with a momentum of 0.85. We see that it is particularly
good at detecting the players, but still struggles when it comes to detecting the
balls.

6.3 Player and Line Detection Clips 54

We see that our trained YOLOv8 model performs particularly well when it comes
to detecting players, which is also the most import class for us. For the goalkeep-
ers and referees we see that our model has a comparatively higher precision than
recall. This suggests that our model learns to predict these classes only when it is
sure in its prediction. This is likely an effect of the model having to ignore persons
such as medics, substitutes and manager, as these might be similar in appearance
to the goalkeepers.

We compare the performances of our player detection model and the best YOLOv8
baseline model in Figure 6.20. Note that we have excluded the goalkeeper and ref-
eree classes in this figure as we are only interested in the others. We see that our
model outperforms the baseline model by a considerable margin for all classes. One
thing to note when comparing the results of our model to the YOLOv8 baseline
model is that ours has separate labels for players, referees and goalkeepers, which
makes it more challenging to predict correctly.

Figure 6.20: Comparison of the pretrained YOLOv8 extra-large model (or-
ange/yellow) and our trained model (blue/purple). When comparing overall scores,
as well as class-by-class scores, our model performs significantly better than the
pretrained model.

6.3.3 Video Classification with Player and Line Detection
Clips

This player detection model was then used in the pipeline described in section 5.3
to create player and line detection clips. These clips were created from both the
full training set and the full validation set of well-defined clips. A TSN video classi-
fication model was then trained on these new clips, with parameters clip_len = 8,
interval = 2, num_clips = 3.

6.3 Player and Line Detection Clips 55

Figure 6.21: Top 1 accuracy of our new model (lime) compared to our original
model (purple), normal humans with a knowledge of football (green) as well as
human experts (blue).

This model achieved a top 1 accuracy of 57.65% on the validation set, which is
considerably lower than the original model. However, it is still comparable to the
results of non-expert humans, as can be seen in Figure 6.21. Note that the accuracy
of this model has been computed over the full validation set. One positive this
model has over the original model is that it is even faster due to the scale of the
input images being smaller. Running inference on a Tesla V100-PCIE-16GB GPU
resulted in a time of 0.2870 seconds per 8-second clip, compared to 0.47 seconds
for the original model despite running on a slower GPU. Note however, that the
time taken to create these clips is not taken into account here.

CHAPTER7
Discussion

In this chapter we will discuss some of our findings and methods. We will touch
on topics such as the dataset, the model and the results. We will also look into
the alternative method we explored, using player and line detection clips as input
for the video classification model, discussing its shortcomings and what we could
do to improve it.

DATASET:
Initially, we decided to go with the nine phases described in section 4.1.1. Some
of the games we received from DBU also contained annotations of an attacking
phase 4 (VI 4 and DE 4). We opted to exclude this phase from our project due to
its limited presence in the data, which would have resulted in insufficient samples
for effective model learning. Moreover, phase 4 is essentially a subset of phase 3,
occurring when the attacking team has an attempt at goal. Consequently, games
lacking phase 4 annotations would label these occurrences as phase 3. This would
cause the dataset to contain attempts at goal annotated as both phase 3 and phase
4, introducing inconsistency into the dataset.

We briefly mentioned the inclusion of action events such as shots, throw-ins and
corners in the data we received. We decided to focus purely on the phase an-
notations, however, integrating these action events could potentially enhance our
model’s performance. For instance, training our model to also detect corners and
throw-ins could provide insights into the phase of play, given that the ball is out
of play during such events. Similarly, leveraging shot annotations could help dif-
ferentiate between phase 3 and phase 4. By training a shot detection model and
combining it with our existing model, we could infer that if a shot occurs during
phase 3, the game would in fact be phase 4.

As shown when presenting the results of our model on a per-game basis, there
seemed to be a large difference in performance from game to game. While we
suggested a few possible causes of this, we are not sure what the actual reason is.
We suspect there might be some inaccuracies in the labeling of the data, so this is

56

57

something we would have liked to look into if more time was available.

We opted for 8-second clips as input for our video classification model. However,
we believe that shorter clips could have potentially improved results. This be-
lief stems from the fact that the feature representations were averaged across all
frames in our video classification model, which suggests that our model was not
fully utilizing the temporal dynamics of the input clips, as it disregarded the order
of frames. Therefore, utilizing shorter clips would yield more fine-grained feature
representations, enhancing the effectiveness of our transformer-based model.

THE MODEL:
Our initial choice of using mmaction2’s implementation of Temporal Segment Net-
works (TSN) was originally just to get a video classification model implemented to
set a baseline. However, we found it interesting to delve into the effects of differ-
ent sampling methods, determined by the hyperparameters num_clips, clip_len
and interval. Unsurprisingly we found that training a model that sampled single
frames from the input clip was not as good as a model that sampled several frames.
An interesting result came when we tested our video classification model on clips
that had been reversed, as this led to an almost identical accuracy as when testing
on normal clips. This results from our model averaging the feature representa-
tions across all frames, thus disregarding the order of frames. This leaves us with
the belief that we could further optimize our model if we altered it to utilize the
temporal dynamics of the input clips.

The second stage of our two-stage solution was the transformer-based model. One
objective of this model was to smooth out predictions over consecutive clips, a
goal successfully demonstrated in Figure 6.16. Another objective of this model
was for it to learn priors concerning the sequential progression of phases. While
we could not explicitly test if our model did learn this, its improved performance
suggested that it did. When implementing this transformer-based model, we con-
sidered using the feature representation of the input clips acquired via the video
classification model, as well as the output probabilities. We experimented with
both, and using the features resulted in the best performances, likely due to the
fact that more information is kept in these 2048-dimensional features than in the
9-dimensional output probabilities. When visualizing the feature representations
of the clips (Figure 6.10) we saw that they exhibited clear patterns relating to the
phase of play, suggesting that they did indeed contain a lot of information relating
to the phase of play.

RESULTS:
When discussing the results and performance, it is important to consider the qual-
ity of the dataset and its annotations. The DBU dataset was not specifically
tailored for machine learning purposes, but rather for faster analysis of football
games. Consequently, the annotations prioritized rough timestamps for each phase
of play over precise annotations. Furthermore, it is important to acknowledge that

58

assigning a specific phase label to a game section is not a purely objective task.
Certain sections may exhibit characteristics of multiple unique phases of play,
requiring subjective labeling decisions. As a result, our dataset contains some in-
accuracies and inconsistencies, making it impossible to create a perfect model.

Another factor to consider when interpreting the results is the balance of the
datasets. The datasets consisting of the well-defined clips were relatively well-
balanced, with each of the nine phases occurring somewhere between 135 and 440
times in the test set. For the datasets consisting of the consecutive clips, however,
there was an imbalance where the ”none” phase occurred more frequently than
the others. In the test set of consecutive clips, 40.04% of the clips were the ”none”
phase. A model that blindly predicted ”none” every time would thus achieve an
accuracy of 40.04%.

With these considerations in mind, our two-stage approach comprising a video
classification model followed by a transformer-based model proved to be a success-
ful model design. While our video classification model proved to be very accurate
even on its own, surpassing human expert scores (Section 6.1.4) on 8-second clips,
we saw in Figure 6.16 that it had a tendency to jump between predictions for con-
secutive clips. Our transformer-based model made the predictions more smooth,
as can also be seen in Figure 6.16, and increased the accuracy from 64.08% to
71.72% on the test set of consecutive clips. Additionally, our model’s impressive
running time is noteworthy, with inference on a complete 90-minute football game
for both models combined taking only 5.5 minutes. This means that our model
would be able to annotate almost 100 games overnight, which could prove very
valuable in tournaments where coaches only have a few days to analyse their op-
ponents.

PLAYER AND LINE DETECTION CLIPS:
Although the results obtained from using player and line detection clips were sub-
optimal, we remain optimistic about the potential success of this method. The
primary reason for the lackluster performance of this method lies in the need for
optimization across several aspects. While we succeeded in developing a proficient
player detection model, both our line segmentation and clustering models left room
for improvement. With enhancements to these models, we are confident that this
method could yield promising results.

CHAPTER8
Conclusion

This chapter concludes our work, where we addressed the challenge of automating
the detection of phases of play in football games, a process currently done manu-
ally. With our two-stage solution comprising a video classification model followed
by a transformer-based model, we managed to streamline the process of phase
detection. Our solution showcased impressive efficiency, capable of classifying a
full 90-minute football game in less than six minutes — significantly faster than
manual labeling.

Our video classification model, utilizing Temporal Segment Networks (TSN), demon-
strated remarkable accuracy in classifying phases of play in 8-second clips, surpass-
ing human experts 75% to 70.83% on a subset of 72 clips. T-distributed Stochastic
Neighbor Embedding (t-SNE) analysis revealed that our model learns insightful
patterns, including distinct clusters for attacking and defending phases, as well as
sequential and cyclic progressions resembling in-game scenarios. The model, how-
ever, did not fully utilize the temporal information of the input clips as it averaged
feature representations across all frames, an aspect we look to address in future
iterations.

Our transformer-based model utilized feature representations of consecutive clips,
processed through our video classification model, to generate refined predictions.
Its main objectives were to smooth out inconsistencies in the original predictions,
which we successfully demonstrated, and to incorporate prior knowledge regarding
the evolution of phases. Although explicit evidence of the model learning these
priors was absent, its significant accuracy improvement of 7.64% over the original
predictions strongly suggests its success in doing so.

While we managed to create a good player detection model, our approach of using
player and line detection clips failed to reach performance levels near those of our
original model. This outcome was primarily due to sub-optimal line detection and
clustering models. Nonetheless, despite its relatively modest performance, this ap-
proach demonstrated the potential of leveraging positional information of players

59

60

to determine phases of play.

In conclusion, our solution provides an accurate and efficient framework for detect-
ing phases of play in football games, successfully answering the research question:
”How can machine learning approaches be effectively applied to temporally localize
and classify group activities in football videos?”. This research paves the way for
more automated and precise analysis of football games.

CHAPTER9
Future Work

After concluding our study, which demonstrated the effectiveness of our solution,
we will discuss avenues for future investigation and enhancement. Furthermore, we
will delve into alternative approaches that hold promise for future implementation.

One thing that can always be optimized is the hyperparameters, which is one
path for future improvements. There are also several model modifications that
could be investigated, such as using shorter input clips for our video classifica-
tion model, longer sequences for our transformer-based model or a combination
of features and probabilities for our transformer-based model. While our player
detection model was good, it struggled with the task of detecting the balls, thus
extending this model to also be able to accurately detect the balls, or alternatively
creating a specialized ball detection model, is another model modification to look
into. Additionally, our line detection and clustering models had plenty of room
for improvement, which could provide the base for future work.

Football is a very dynamic sport where a lot can happen even within short time
frames. We therefore believe that the temporal information of the input videos
is crucial for making a good model. We saw that our TSN video classification
model disregards the order of frames as it averages feature representations across
all frames. This underscores the need for improvement in future iterations. One
approach we propose involves sampling shorter input clips to preserve temporal
dynamics. An extreme case of this would be sampling input clips of single frames,
however this would likely slow down our model drastically. Alternatively, explor-
ing different video classification models that utilize frame order presents another
avenue for enhancement.

Another aspect we would like to improve is our dataset. As we discussed in Chap-
ter 7, we suspected that there were some inaccuracies within the labeling of the
dataset which could be studied further. Furthermore, we would like to increase
the size of the dataset. This could be done in a semi-supervised fashion, where we
use predictions from our current model to label new data, and for cases where the

61

62

model’s uncertainty is above a certain threshold we will manually label those clips.
This would speed up the labeling process compared to the current fully manual
labeling process.

An initial idea of ours that we didn’t get around to implementing was replacing
the line segmentation model with a model that can map the image of the pitch
to a bird’s-eye view. Achieving a bird’s-eye view mapping of the pitch, combined
with an accurate player detection model, would give us the exact coordinates of
the players on the pitch. From this we could create bird’s-eye view clips of player
positions with a static pitch as background. This would remove the noise of in-
accurate line detections, and would simplify the data while still keeping all the
positional information of the players.

Extracting the exact player coordinates would open up many possibilities when it
comes to detecting the phase of play. One such possibility is a temporal graphical
model, where the players are connected to each other based on their distances
between each other. This would vastly reduce the dimensions of the data as each
frame would go from a 448x448 (or larger) image to a graph of 22 nodes.

In conclusion, our solution provides an accurate and efficient solution to the task
of detecting phases of play in football games. However, there are several possible
areas of improvement as explored in this chapter. Particularly, we believe that
incorporating more temporal information into our model would lead to increased
performance.

References
[1] Soccer is a sport in the world. url: https://www.bartleby.com/essay/

Soccer-Is-A-Sport-In-The-World-FJV5YW2U49V.
[2] Deloitte. Annual review of football finance europe. https://www2.deloitte.

com/uk/en/pages/sports-business-group/articles/annual-review-
of-football-finance-europe.html, 2023. Accessed: 05/03/2024.

[3] Fifa.com. https://www.fifa.com/fifaplus/en/tournaments/mens/
worldcup/canadamexicousa2026, 2024. Accessed: 27/02/2024.

[4] I. C. Education. What are neural networks? url: https://www.ibm.com/
cloud/learn/neural-networks.

[5] I. C. Education. What are convolutional neural networks? url: https://
www.ibm.com/cloud/learn/convolutional-neural-networks.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition, 2015. arXiv: 1512.03385 [cs.CV].

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser, and I. Polosukhin. Attention is all you need, 2017. arXiv: 1706.03762
[cs.CL].

[8] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah.
Transformers in vision: a survey. ACM Computing Surveys, 54(10s):1–41,
Jan. 2022. issn: 1557-7341. doi: 10.1145/3505244. url: http://dx.doi.
org/10.1145/3505244.

[9] T. Shehzadi, K. A. Hashmi, D. Stricker, and M. Z. Afzal. Object detection
with transformers: a review, 2023. arXiv: 2306.04670 [cs.CV].

[10] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit,
and N. Houlsby. An image is worth 16x16 words: transformers for image
recognition at scale, 2021. arXiv: 2010.11929 [cs.CV].

[11] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko.
End-to-end object detection with transformers, 2020. arXiv: 2005.12872
[cs.CV].

[12] Z. Zong, G. Song, and Y. Liu. Detrs with collaborative hybrid assignments
training, 2023. arXiv: 2211.12860 [cs.CV].

63

https://www.bartleby.com/essay/Soccer-Is-A-Sport-In-The-World-FJV5YW2U49V
https://www.bartleby.com/essay/Soccer-Is-A-Sport-In-The-World-FJV5YW2U49V
https://www2.deloitte.com/uk/en/pages/sports-business-group/articles/annual-review-of-football-finance-europe.html
https://www2.deloitte.com/uk/en/pages/sports-business-group/articles/annual-review-of-football-finance-europe.html
https://www2.deloitte.com/uk/en/pages/sports-business-group/articles/annual-review-of-football-finance-europe.html
https://www.fifa.com/fifaplus/en/tournaments/mens/worldcup/canadamexicousa2026
https://www.fifa.com/fifaplus/en/tournaments/mens/worldcup/canadamexicousa2026
https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/convolutional-neural-networks
https://www.ibm.com/cloud/learn/convolutional-neural-networks
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1145/3505244
http://dx.doi.org/10.1145/3505244
http://dx.doi.org/10.1145/3505244
https://arxiv.org/abs/2306.04670
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2211.12860

REFERENCES 64

[13] Q. Chen, X. Chen, J. Wang, S. Zhang, K. Yao, H. Feng, J. Han, E. Ding,
G. Zeng, and J. Wang. Group detr: fast detr training with group-wise one-
to-many assignment, 2023. arXiv: 2207.13085 [cs.CV].

[14] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, and C. Schmid. Vivit:
a video vision transformer, 2021. arXiv: 2103.15691 [cs.CV].

[15] G. Bertasius, H. Wang, and L. Torresani. Is space-time attention all you
need for video understanding?, 2021. arXiv: 2102.05095 [cs.CV].

[16] Z. Tong, Y. Song, J. Wang, and L. Wang. Videomae: masked autoencoders
are data-efficient learners for self-supervised video pre-training, 2022. arXiv:
2203.12602 [cs.CV].

[17] L. Wang, B. Huang, Z. Zhao, Z. Tong, Y. He, Y. Wang, Y. Wang, and Y.
Qiao. Videomae v2: scaling video masked autoencoders with dual masking,
2023. arXiv: 2303.16727 [cs.CV].

[18] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998. doi: 10.1109/5.726791.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012.

[20] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition, 2015. arXiv: 1409.1556 [cs.CV].

[21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions, 2014.
arXiv: 1409.4842 [cs.CV].

[22] N. Dalal and B. Triggs. Histograms of oriented gradients for human de-
tection. In 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), volume 1, 886–893 vol. 1, 2005. doi:
10.1109/CVPR.2005.177.

[23] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation, 2014. arXiv: 1311.
2524 [cs.CV].

[24] R. Girshick. Fast r-cnn, 2015. arXiv: 1504.08083 [cs.CV].
[25] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: towards real-time object

detection with region proposal networks, 2016. arXiv: 1506.01497 [cs.CV].
[26] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:

unified, real-time object detection, 2016. arXiv: 1506.02640 [cs.CV].
[27] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger, 2016. arXiv:

1612.08242 [cs.CV].

https://arxiv.org/abs/2207.13085
https://arxiv.org/abs/2103.15691
https://arxiv.org/abs/2102.05095
https://arxiv.org/abs/2203.12602
https://arxiv.org/abs/2303.16727
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.4842
https://doi.org/10.1109/CVPR.2005.177
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1612.08242

REFERENCES 65

[28] J. Redmon and A. Farhadi. Yolov3: an incremental improvement, 2018.
arXiv: 1804.02767 [cs.CV].

[29] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao. Yolov4: optimal speed and
accuracy of object detection, 2020. arXiv: 2004.10934 [cs.CV].

[30] Ultralytics. YOLOv5: A state-of-the-art real-time object detection system.
https://docs.ultralytics.com, 2021.

[31] G. Jocher, A. Chaurasia, and J. Qiu. YOLO by Ultralytics, version 8.0.0,
Jan. 2023. url: https://github.com/ultralytics/ultralytics.

[32] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. Simple online and
realtime tracking. In 2016 IEEE International Conference on Image Pro-
cessing (ICIP). IEEE, Sept. 2016. doi: 10.1109/icip.2016.7533003. url:
http://dx.doi.org/10.1109/ICIP.2016.7533003.

[33] N. Wojke, A. Bewley, and D. Paulus. Simple online and realtime tracking
with a deep association metric, 2017. arXiv: 1703.07402 [cs.CV].

[34] J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, and M.-H. Yang. Online multi-
object tracking with dual matching attention networks, 2019. arXiv: 1902.
00749 [cs.CV].

[35] Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, and X.
Wang. Bytetrack: multi-object tracking by associating every detection box,
2022. arXiv: 2110.06864 [cs.CV].

[36] J. Li, X. Gao, and T. Jiang. Graph networks for multiple object tracking. In
2020 IEEE Winter Conference on Applications of Computer Vision (WACV),
pages 708–717, 2020. doi: 10.1109/WACV45572.2020.9093347.

[37] X. Liu and H. Caesar. Offline tracking with object permanence, 2023. arXiv:
2310.01288 [cs.CV].

[38] K. Simonyan and A. Zisserman. Two-stream convolutional networks for ac-
tion recognition in videos, 2014. arXiv: 1406.2199 [cs.CV].

[39] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spa-
tiotemporal features with 3d convolutional networks, 2015. arXiv: 1412.
0767 [cs.CV].

[40] J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model
and the kinetics dataset, 2018. arXiv: 1705.07750 [cs.CV].

[41] C. Feichtenhofer, H. Fan, J. Malik, and K. He. Slowfast networks for video
recognition, 2019. arXiv: 1812.03982 [cs.CV].

[42] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. V. Gool. Tem-
poral segment networks: towards good practices for deep action recognition,
2016. arXiv: 1608.00859 [cs.CV].

[43] H. Xu, A. Das, and K. Saenko. R-c3d: region convolutional 3d network for
temporal activity detection, 2017. arXiv: 1703.07814 [cs.CV].

https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/2004.10934
https://docs.ultralytics.com
https://github.com/ultralytics/ultralytics
https://doi.org/10.1109/icip.2016.7533003
http://dx.doi.org/10.1109/ICIP.2016.7533003
https://arxiv.org/abs/1703.07402
https://arxiv.org/abs/1902.00749
https://arxiv.org/abs/1902.00749
https://arxiv.org/abs/2110.06864
https://doi.org/10.1109/WACV45572.2020.9093347
https://arxiv.org/abs/2310.01288
https://arxiv.org/abs/1406.2199
https://arxiv.org/abs/1412.0767
https://arxiv.org/abs/1412.0767
https://arxiv.org/abs/1705.07750
https://arxiv.org/abs/1812.03982
https://arxiv.org/abs/1608.00859
https://arxiv.org/abs/1703.07814

REFERENCES 66

[44] R. Zeng, W. Huang, M. Tan, Y. Rong, P. Zhao, J. Huang, and C. Gan.
Graph convolutional networks for temporal action localization, 2019. arXiv:
1909.03252 [cs.CV].

[45] J. Tan, J. Tang, L. Wang, and G. Wu. Relaxed transformer decoders for
direct action proposal generation, 2021. arXiv: 2102.01894 [cs.CV].

[46] T. Lin, X. Zhao, H. Su, C. Wang, and M. Yang. Bsn: boundary sensitive
network for temporal action proposal generation, 2018. arXiv: 1806.02964
[cs.CV].

[47] C. Lin, C. Xu, D. Luo, Y. Wang, Y. Tai, C. Wang, J. Li, F. Huang, and
Y. Fu. Learning salient boundary feature for anchor-free temporal action
localization, 2021. arXiv: 2103.13137 [cs.CV].

[48] T.-K. Kang, G.-H. Lee, and S.-W. Lee. Htnet: anchor-free temporal action lo-
calization with hierarchical transformers, 2022. arXiv: 2207.09662 [cs.CV].

[49] M. Xu, J.-M. Perez-Rua, X. Zhu, B. Ghanem, and B. Martinez. Low-fidelity
end-to-end video encoder pre-training for temporal action localization, 2021.
arXiv: 2103.15233 [cs.CV].

[50] A. Deliège, A. Cioppa, S. Giancola, M. J. Seikavandi, J. V. Dueholm, K. Nas-
rollahi, B. Ghanem, T. B. Moeslund, and M. V. Droogenbroeck. Soccernet-
v2: a dataset and benchmarks for holistic understanding of broadcast soccer
videos, 2021. arXiv: 2011.13367 [cs.CV].

[51] S. Giancola, A. Cioppa, A. Deliège, F. Magera, V. Somers, L. Kang, X. Zhou,
O. Barnich, C. De Vleeschouwer, A. Alahi, B. Ghanem, M. Van Droogen-
broeck, A. Darwish, A. Maglo, A. Clapés, A. Luyts, A. Boiarov, A. Xarles,
A. Orcesi, A. Shah, B. Fan, B. Comandur, C. Chen, C. Zhang, C. Zhao,
C. Lin, C.-Y. Chan, C. C. Hui, D. Li, F. Yang, F. Liang, F. Da, F. Yan,
F. Yu, G. Wang, H. A. Chan, H. Zhu, H. Kan, J. Chu, J. Hu, J. Gu, J.
Chen, J. V. B. Soares, J. Theiner, J. De Corte, J. H. Brito, J. Zhang, J.
Li, J. Liang, L. Shen, L. Ma, L. Chen, M. Santos Marques, M. Azatov,
N. Kasatkin, N. Wang, Q. Jia, Q. C. Pham, R. Ewerth, R. Song, R. Li,
R. Gade, R. Debien, R. Zhang, S. Lee, S. Escalera, S. Jiang, S. Odashima,
S. Chen, S. Masui, S. Ding, S.-w. Chan, S. Chen, T. El-Shabrawy, T. He,
T. B. Moeslund, W.-C. Siu, W. Zhang, W. Li, X. Wang, X. Tan, X. Li, X.
Wei, X. Ye, X. Liu, X. Wang, Y. Guo, Y. Zhao, Y. Yu, Y. Li, Y. He, Y.
Zhong, Z. Guo, and Z. Li. Soccernet 2022 challenges results. In Proceedings
of the 5th International ACM Workshop on Multimedia Content Analysis in
Sports, MM ’22. ACM, Oct. 2022. doi: 10.1145/3552437.3558545. url:
http://dx.doi.org/10.1145/3552437.3558545.

[52] A. Cioppa, S. Giancola, V. Somers, F. Magera, X. Zhou, H. Mkhallati, A.
Deliège, J. Held, C. Hinojosa, A. M. Mansourian, P. Miralles, O. Barnich,
C. D. Vleeschouwer, A. Alahi, B. Ghanem, M. V. Droogenbroeck, A. Kamal,
A. Maglo, A. Clapés, A. Abdelaziz, A. Xarles, A. Orcesi, A. Scott, B. Liu,
B. Lim, C. Chen, F. Deuser, F. Yan, F. Yu, G. Shitrit, G. Wang, G. Choi,

https://arxiv.org/abs/1909.03252
https://arxiv.org/abs/2102.01894
https://arxiv.org/abs/1806.02964
https://arxiv.org/abs/1806.02964
https://arxiv.org/abs/2103.13137
https://arxiv.org/abs/2207.09662
https://arxiv.org/abs/2103.15233
https://arxiv.org/abs/2011.13367
https://doi.org/10.1145/3552437.3558545
http://dx.doi.org/10.1145/3552437.3558545

REFERENCES 67

H. Kim, H. Guo, H. Fahrudin, H. Koguchi, H. Ardö, I. Salah, I. Yerushalmy,
I. Muhammad, I. Uchida, I. Be’ery, J. Rabarisoa, J. Lee, J. Fu, J. Yin, J.
Xu, J. Nang, J. Denize, J. Li, J. Zhang, J. Kim, K. Synowiec, K. Kobayashi,
K. Zhang, K. Habel, K. Nakajima, L. Jiao, L. Ma, L. Wang, L. Wang, M. Li,
M. Zhou, M. Nasr, M. Abdelwahed, M. Liashuha, N. Falaleev, N. Oswald,
Q. Jia, Q.-C. Pham, R. Song, R. Hérault, R. Peng, R. Chen, R. Liu, R.
Baikulov, R. Fukushima, S. Escalera, S. Lee, S. Chen, S. Ding, T. Someya,
T. B. Moeslund, T. Li, W. Shen, W. Zhang, W. Li, W. Dai, W. Luo, W.
Zhao, W. Zhang, X. Yang, Y. Ma, Y. Joo, Y. Zeng, Y. Gan, Y. Zhu, Y.
Zhong, Z. Ruan, Z. Li, Z. Huang, and Z. Meng. Soccernet 2023 challenges
results, 2023. arXiv: 2309.06006 [cs.CV].

[53] G. Jin. Player target tracking and detection in football game video using edge
computing and deep learning. The Journal of Supercomputing, 78(7):9475–
9491, 2022. issn: 1573-0484. doi: 10.1007/s11227-021-04274-6.

[54] P. Mavrogiannis and I. Maglogiannis. Amateur football analytics using com-
puter vision. Neural Computing and Applications, 34(22):19639–19654, 2022.
issn: 1433-3058. doi: 10.1007/s00521-022-07692-6.

[55] W. Kim, S.-W. Moon, J. Lee, D.-W. Nam, and C. Jung. Multiple player
tracking in soccer videos: an adaptive multiscale sampling approach. Multi-
media Systems, 24(6):611–623, 2018. issn: 1432-1882. doi: 10.1007/s00530-
018-0586-9.

[56] A. Maglo, A. Orcesi, and Q.-C. Pham. Efficient tracking of team sport players
with few game-specific annotations, 2022. arXiv: 2204.04049 [cs.CV].

[57] G. Shitrit, I. Be’ery, and I. Yerhushalmy. Soccernet 2023 tracking challenge –
3rd place mot4mot team technical report, 2023. arXiv: 2308.16651 [cs.CV].

[58] J. Komorowski and G. Kurzejamski. Graph-based multi-camera soccer player
tracker. In 2022 International Joint Conference on Neural Networks (IJCNN).
IEEE, July 2022. doi: 10.1109/ijcnn55064.2022.9892562. url: http:
//dx.doi.org/10.1109/IJCNN55064.2022.9892562.

[59] X. Fu, W. Huang, Y. Sun, X. Zhu, J. Evans, X. Song, T. Geng, and S.
He. A novel dataset for multi-view multi-player tracking in soccer scenarios.
Applied Sciences, 13(9), 2023. issn: 2076-3417. doi: 10.3390/app13095361.
url: https://www.mdpi.com/2076-3417/13/9/5361.

[60] K. Okuma, J. J. Little, and D. G. Lowe. Automatic rectification of long
image sequences. In Asian Conference on Computer Vision, volume 9, 2004.

[61] A. Gupta, J. J. Little, and R. J. Woodham. Using line and ellipse features
for rectification of broadcast hockey video. In 2011 Canadian conference on
computer and robot vision, pages 32–39. IEEE, 2011.

[62] P.-C. Wen, W.-C. Cheng, Y.-S. Wang, H.-K. Chu, N. C. Tang, and H.-Y. M.
Liao. Court reconstruction for camera calibration in broadcast basketball
videos. IEEE transactions on visualization and computer graphics, 22(5):1517–
1526, 2015.

https://arxiv.org/abs/2309.06006
https://doi.org/10.1007/s11227-021-04274-6
https://doi.org/10.1007/s00521-022-07692-6
https://doi.org/10.1007/s00530-018-0586-9
https://doi.org/10.1007/s00530-018-0586-9
https://arxiv.org/abs/2204.04049
https://arxiv.org/abs/2308.16651
https://doi.org/10.1109/ijcnn55064.2022.9892562
http://dx.doi.org/10.1109/IJCNN55064.2022.9892562
http://dx.doi.org/10.1109/IJCNN55064.2022.9892562
https://doi.org/10.3390/app13095361
https://www.mdpi.com/2076-3417/13/9/5361

REFERENCES 68

[63] A. Maglo, A. Orcesi, J. Denize, and Q. C. Pham. Individual locating of
soccer players from a single moving view. Sensors, 23(18), 2023. issn: 1424-
8220. doi: 10.3390/s23187938. url: https://www.mdpi.com/1424-
8220/23/18/7938.

[64] J. V. B. Soares, A. Shah, and T. Biswas. Temporally precise action spotting
in soccer videos using dense detection anchors. In 2022 IEEE International
Conference on Image Processing (ICIP), pages 2796–2800, 2022. doi: 10.
1109/ICIP46576.2022.9897256.

[65] A. Xarles, S. Escalera, T. B. Moeslund, and A. Clapés. Astra: an action
spotting transformer for soccer videos. In Proceedings of the 6th Interna-
tional Workshop on Multimedia Content Analysis in Sports, MMSports ’23,
pages 93–102, New York, NY, USA. Association for Computing Machinery,
2023. doi: 10.1145/3606038.3616153. url: https://doi.org/10.1145/
3606038.3616153.

[66] J. Denize, M. Liashuha, J. Rabarisoa, A. Orcesi, and R. Hérault. Comedian:
self-supervised learning and knowledge distillation for action spotting using
transformers. arXiv preprint arXiv:2309.01270, 2023.

[67] S. Giancola, A. Cioppa, J. Georgieva, J. Billingham, A. Serner, K. Peek,
B. Ghanem, and M. V. Droogenbroeck. Towards active learning for action
spotting in association football videos, 2023. arXiv: 2304.04220 [cs.CV].

[68] F. Vidal-Codina, N. Evans, B. El Fakir, and J. Billingham. Automatic event
detection in football using tracking data. Sports Engineering, 25(1):18, 2022.
issn: 1460-2687. doi: 10.1007/s12283-022-00381-6. url: https://doi.
org/10.1007/s12283-022-00381-6.

[69] C. Direkoǧlu and N. E. O’Connor. Temporal segmentation and recognition
of team activities in sports. Machine Vision and Applications, 29(5):891–913,
2018. issn: 1432-1769. doi: 10.1007/s00138-018-0944-9. url: https:
//doi.org/10.1007/s00138-018-0944-9.

[70] S. Li, Q. Cao, L. Liu, K. Yang, S. Liu, J. Hou, and S. Yi. Groupformer:
group activity recognition with clustered spatial-temporal transformer. In
Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 13668–13677, 2021.

[71] M. Ötting and D. Karlis. Football tracking data: a copula-based hidden
markov model for classification of tactics in football. Annals of Operations
Research, 325(1):167–183, 2023. issn: 1572-9338. doi: 10.1007/s10479-
022-04660-0. url: https://doi.org/10.1007/s10479-022-04660-0.

[72] C.-Y. Wu, C. Feichtenhofer, H. Fan, K. He, P. Krähenbühl, and R. Girshick.
Long-term feature banks for detailed video understanding, 2019. arXiv: 1812.
05038 [cs.CV].

[73] C.-Y. Wu and P. Krähenbühl. Towards long-form video understanding, 2021.
arXiv: 2106.11310 [cs.CV].

https://doi.org/10.3390/s23187938
https://www.mdpi.com/1424-8220/23/18/7938
https://www.mdpi.com/1424-8220/23/18/7938
https://doi.org/10.1109/ICIP46576.2022.9897256
https://doi.org/10.1109/ICIP46576.2022.9897256
https://doi.org/10.1145/3606038.3616153
https://doi.org/10.1145/3606038.3616153
https://doi.org/10.1145/3606038.3616153
https://arxiv.org/abs/2304.04220
https://doi.org/10.1007/s12283-022-00381-6
https://doi.org/10.1007/s12283-022-00381-6
https://doi.org/10.1007/s12283-022-00381-6
https://doi.org/10.1007/s00138-018-0944-9
https://doi.org/10.1007/s00138-018-0944-9
https://doi.org/10.1007/s00138-018-0944-9
https://doi.org/10.1007/s10479-022-04660-0
https://doi.org/10.1007/s10479-022-04660-0
https://doi.org/10.1007/s10479-022-04660-0
https://arxiv.org/abs/1812.05038
https://arxiv.org/abs/1812.05038
https://arxiv.org/abs/2106.11310

REFERENCES 69

[74] F. Sener, D. Singhania, and A. Yao. Temporal aggregate representations for
long-range video understanding, 2020. arXiv: 2006.00830 [cs.CV].

[75] Open MMLab. MMAction2. https://github.com/open-mmlab/mmaction2/
/blob/main/configs/recognition/tsn/README.md, 2024.

[76] L. van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(86):2579–2605, 2008. url: http://jmlr.
org/papers/v9/vandermaaten08a.html.

[77] Ultralytics. Yolov8. https://docs.ultralytics.com, 2021.

https://arxiv.org/abs/2006.00830
https://github.com/open-mmlab/mmaction2//blob/main/configs/recognition/tsn/README.md
https://github.com/open-mmlab/mmaction2//blob/main/configs/recognition/tsn/README.md
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://docs.ultralytics.com

APPENDIXA
Appendix

A.1 YOLOv8 Architecture

Figure A.1: Graph of YOLOv8 architecture by GitHub user RangeKing, taken
from https://github.com/ultralytics/ultralytics/issues/189

70

A.2 TSN Experiments 71

A.2 TSN Experiments

scale clip_len interval num_clips epoch top 1 top 5 mean top 1
448 1 1 1 56 0.6359 0.9728 0.6241
448 1 1 2 44 0.6467 0.9807 0.6439
448 2 1 2 41 0.6597 0.9819 0.6583
448 3 1 2 18 0.6529 0.9898 0.6653
448 4 1 2 21 0.6382 0.9807 0.6345
448 5 1 2 41 0.6540 0.9796 0.6632
448 6 1 2 24 0.6387 0.9830 0.6337
448 6 1 3 41 0.6625 0.9796 0.6567
448 6 2 3 25 0.6484 0.9881 0.6594
448 6 3 3 24 0.6387 0.9864 0.6371
448 6 4 3 15 0.6229 0.9813 0.6453
448 6 6 3 15 0.6382 0.9853 0.6351
448 6 8 3 13 0.6308 0.9892 0.6448
448 7 1 2 41 0.6619 0.9807 0.6713
448 8 1 2 36 0.6506 0.9836 0.6618
448 10 1 1 31 0.6251 0.9813 0.6244
448 10 1 2 28 0.6591 0.9881 0.6744
448 10 2 2 41 0.6433 0.9847 0.6386
448 10 3 2 21 0.6280 0.9824 0.6084
448 10 4 2 15 0.6302 0.9881 0.6294
448 10 5 2 28 0.6325 0.9796 0.6512
448 10 6 2 26 0.6336 0.9847 0.6397
448 10 7 2 21 0.6393 0.9841 0.6444
448 10 8 2 16 0.6376 0.9819 0.6372
448 10 9 2 10 0.6325 0.9841 0.6444
448 10 10 2 14 0.6410 0.9904 0.6349
448 12 1 2 41 0.6518 0.9847 0.6563
448 12 2 2 17 0.6472 0.9870 0.6604
448 12 3 2 25 0.6438 0.9836 0.6489
448 12 4 2 28 0.6478 0.9858 0.6625
448 12 5 2 21 0.6399 0.9841 0.6329
448 16 1 2 43 0.6331 0.9785 0.6157

Table A.1: Table of all TSN video classification model experiments carried out.
It shows the parameters (scale, clip len, interval and num) for each given training
run, the epoch where the best model was reached, as well as the performances on
the validation set. Our final model is highlighted in bold.

A.3 YOLOv8 Experiments 72

A.3 YOLOv8 Experiments
Here, the YOLOv8 experiment results are shown in-depth. The graphs show the
four evaluation metrics described in section 6.3.1, both for each class individually
and the average among all classes, for the various experiments performed. Since
the ”ball” class had comparably much smaller scores in all of the metrics, and
also is not as important for this thesis, these values have been excluded from the
graphs for better readability. Unless otherwise stated, all hyperparameters such
as momentum, batch size, learning rte, etc. were set to the default values which
can be found here [77].

Figure A.2 shows the performance of training the different sizes of the yolov8
models: nano (yolov8n), small (yolov8s), medium (yolov8m), large (yolov8l), and
very large (yolov8x) on v1 of the dataset. Here it is clear to see the trend that the
larger the model the better the performance. It is also worth noting that even the
largest model can run inference in real time, as it had an inference of 10.2 ms / 98
fps.

Figure A.2: YOLOv8 runs with different baseline models, trained on v1 of the
dataset.

Figure A.3 shows the performances when training the large model (yolov8l) on the
various versions of the dataset. Here the results vary a bit more, but generally
runs trained on v3, v4 and v5 seem to have the best results.

A.3 YOLOv8 Experiments 73

Figure A.3: YOLOv8l (large model) runs trained on different datasets.

Figure A.4 shows the performances when training the large model (yolov8l) on the
v3 dataset with varying image sizes. Here there is also a clear trend that training
on larger images leads to better results. However going from an image size of 1280
to 1920 pixels doesn’t seem to improve the results much more.

Figure A.5 shows the performances when training the large model (yolov8l) on
the v3 dataset with different momentum values and an image size of 1280. The
results here are a bit harder to draw a conclusion from, but generally it seems that
a momentum value in the range of 0.85 to 0.9 is optimal.

A.3 YOLOv8 Experiments 74

Figure A.4: YOLOv8l (large model) trained on the v3 dataset with different
image sizes.

Figure A.5: YOLOv8l (large model) trained on the v3 dataset with different
momentum values. Input images are 1280 pixels.

A.3 YOLOv8 Experiments 75

Based on the previous experiments, a final experiment was carried out by training
the very large model (yolov8x) on the v3 and v4 datasets with different momentum
settings and an image size of 1280 pixels. The results can be seen in figure A.6 and
show that the best results are achieved by training the very large model (yolov8x)
on the v4 dataset with a momentum of 0.85.

Figure A.6: YOLOv8x (very large model) trained on the v3 and v4 datasets with
different momentum values. Input images are 1280 pixels.

	Introduction
	Motivation
	Problem Statement
	Goals and Solutions
	Scope and Limitations
	Main Contributions
	Thesis Outline

	Background and Theory
	Neural Networks (NNs)
	Feed-Forward Neural Networks (FNNs)
	Convolutional Neural Networks (CNNs)
	Residual Networks (ResNets)

	Transformers
	Image Classification
	Object Detection and Tracking
	Video Classification
	Temporal Action Localization

	Related Work
	Dataset Description
	DBU Data
	The Play Phases
	Data Preprocessing
	Data Split
	Descriptive Statistics

	SoccerNet-v2 Dataset
	Data Preprocessing
	Data Augmentations

	Methods
	Methodological Considerations
	The Model
	Stage 1: Video Classification Model
	Stage 2: Transformer-based Model
	The Complete Model

	Player and Line Detection Input Clips

	Experiments and Results
	TSN Video Classification
	Experimental Setup and Evaluation Metrics
	Training Experiments
	Results
	Human Comparison
	Feature Analysis
	Further Analysis

	Transformer-based Model
	Experimental Setup and Evaluation Metrics
	Training Experiments
	Results
	Feature Analysis

	Player and Line Detection Clips
	Experimental Setup and Evaluation Metrics
	YOLOv8 Training Experiments and Results
	Video Classification with Player and Line Detection Clips

	Discussion
	Conclusion
	Future Work
	References
	Appendix
	YOLOv8 Architecture
	TSN Experiments
	YOLOv8 Experiments

